版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
深圳新安東山書院中考數(shù)學(xué)期末幾何綜合壓軸題易錯匯編一、中考數(shù)學(xué)幾何綜合壓軸題1.探究:小明在求同一坐標(biāo)軸上兩點間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點P1(x1,y1),P2(x2,y2),可通過構(gòu)造直角三角形利用圖1得到結(jié)論:他還利用圖2證明了線段P1P2的中點P(x,y)P的坐標(biāo)公式:,.(1)請你幫小明寫出中點坐標(biāo)公式的證明過程;運用:(2)①已知點M(2,﹣1),N(﹣3,5),則線段MN長度為;②直接寫出以點A(2,2),B(﹣2,0),C(3,﹣1),D為頂點的平行四邊形頂點D的坐標(biāo):;拓展:(3)如圖3,點P(2,n)在函數(shù)(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請在OL、x軸上分別找出點E、F,使△PEF的周長最小,簡要敘述作圖方法,并求出周長的最小值.解析:(1)答案見解析;(2)①;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3).【詳解】試題分析:(1)用P1、P2的坐標(biāo)分別表示出OQ和PQ的長即可證得結(jié)論;(2)①直接利用兩點間距離公式可求得MN的長;②分AB、AC、BC為對角線,可求得其中心的坐標(biāo),再利用中點坐標(biāo)公式可求得D點坐標(biāo);(3)設(shè)P關(guān)于直線OL的對稱點為M,關(guān)于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,則可知OR=OS=2,利用兩點間距離公式可求得R的坐標(biāo),再由PR=PS=n,可求得n的值,可求得P點坐標(biāo),利用中點坐標(biāo)公式可求得M點坐標(biāo),由對稱性可求得N點坐標(biāo),連接MN交直線OL于點E,交x軸于點S,此時EP=EM,F(xiàn)P=FN,此時滿足△PEF的周長最小,利用兩點間距離公式可求得其周長的最小值.試題解析:(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=,∴OQ=OQ1+Q1Q=x1+=,∵PQ為梯形P1Q1Q2P2的中位線,∴PQ==,即線段P1P2的中點P(x,y)P的坐標(biāo)公式為x=,y=;(2)①∵M(2,﹣1),N(﹣3,5),∴MN==,故答案為;②∵A(2,2),B(﹣2,0),C(3,﹣1),∴當(dāng)AB為平行四邊形的對角線時,其對稱中心坐標(biāo)為(0,1),設(shè)D(x,y),則x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此時D點坐標(biāo)為(﹣3,3),當(dāng)AC為對角線時,同理可求得D點坐標(biāo)為(7,1),當(dāng)BC為對角線時,同理可求得D點坐標(biāo)為(﹣1,﹣3),綜上可知D點坐標(biāo)為(﹣3,3)或(7,1)或(﹣1,﹣3),故答案為(﹣3,3)或(7,1)或(﹣1,﹣3);(3)如圖,設(shè)P關(guān)于直線OL的對稱點為M,關(guān)于x軸的對稱點為N,連接PM交直線OL于點R,連接PN交x軸于點S,連接MN交直線OL于點E,交x軸于點F,又對稱性可知EP=EM,F(xiàn)P=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此時△PEF的周長即為MN的長,為最小,設(shè)R(x,),由題意可知OR=OS=2,PR=PS=n,∴=2,解得x=﹣(舍去)或x=,∴R(,),∴,解得n=1,∴P(2,1),∴N(2,﹣1),設(shè)M(x,y),則=,=,解得x=,y=,∴M(,),∴MN==,即△PEF的周長的最小值為.考點:一次函數(shù)綜合題;閱讀型;分類討論;最值問題;探究型;壓軸題.2.(基礎(chǔ)鞏固)(1)如圖1,在中,,直線過點,分別過兩點作,垂足分別為.求證:.(嘗試應(yīng)用)(2)如圖2,在中,,是上一點,過作的垂線交于點.若,求的長.(拓展提高)(3)如圖3,在中,在上取點,使得,若,求的面積.解析:(1)見解析;(2);(3)【分析】(1)由直角三角形的性質(zhì)證得∠BDC=∠AEC,由相似三角形的判定定理可得出結(jié)論;(2)過點E作EF⊥BC于點F,由相似三角形的性質(zhì)得出,由銳角三角函數(shù)的定義求出DF=16,則可求出答案;(3)過點A作AM⊥BC于點M,過點D作DN⊥BC,交BC的延長線于點N,證明△ABM≌△DCN(AAS),由全等三角形的性質(zhì)得出BM=CN,AM=DN,設(shè)BE=4a,EC=3a,由(1)得△AEM∽△EDN,得出比例線段,求出a=1,b=,由平行四邊形的面積公式可得出答案.【詳解】解:(1)∵,∴,∵,∴,∴,∴.∵,∴,∴,∴(2)過點作于點,由(1)得,∴∵,,∴,∴∵,∴∴(3)過點作于點,過點作的延長線于點,∴∵四邊形是平行四邊形,∴,∴,∴,∴,∵,∴∵,設(shè)∴∵,由(1)得,∴,∴∴∵,∴∴∴的面積【點睛】本題是相似形綜合題,考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),平行四邊形的性質(zhì),銳角三角函數(shù)的定義,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.3.(概念學(xué)習(xí))在平面直角坐標(biāo)系中,的半徑為,若平移個單位后,使某圖形上所有點在內(nèi)或上,則稱的最小值為對該圖形的“最近覆蓋距離”.例如,如圖①,,則對線段的“最近覆蓋距離”為.(概念理解)(1)對點的“最近覆蓋距離”為_.(2)如圖②,點是函數(shù)圖像上一點,且對點的“最近覆蓋距離”為,則點的坐標(biāo)為_.(拓展應(yīng)用)(3)如圖③,若一次函數(shù)的圖像上存在點,使對點的“最近覆蓋距離”為,求的取值范圍.(4),且,將對線段的“最近覆蓋距離”記為,則的取值范圍是.解析:(1)4;(2)或;(3)或;(4)【分析】(1)求出點(3,4)與原點的距離,這個距離與1的差即是所求結(jié)果;(2)設(shè)點P的坐標(biāo)為,根據(jù)P到圓心的距離為4及勾股定理,可得關(guān)于x的方程,解方程即可求得點P的坐標(biāo);(3)考慮臨界狀態(tài),當(dāng)OC=2時,函數(shù)圖象上存在點C,使對點C的“最近覆蓋距離”為1,利用三角形相似求出;同理,另一個臨界狀態(tài)為,即可求解;(4)由題意可得DE是一條傾斜角度為45°,長度為的線段,可在圓上找到兩條與之平行且等長的弦AB、FG,如果D落在弧AF上,或者落在弧BG上,進而求解.【詳解】(1)點(3,4)與原點的距離為,而5-1=4,則對點的“最近覆蓋距離”為4;故答案為:(2)由題意可知,到圓的最小距離為,即到圓心的距離為由點P在直線上,故設(shè),則解得故點P的坐標(biāo)為:或故答案為:或(3)如圖,考慮臨界狀態(tài),過O作OC⊥DE于C點,當(dāng)時,函數(shù)圖像上存在點,使對點的“最近覆蓋距離”為則設(shè)則由勾股定理可得:解得(舍)此時.同理,另一個臨界狀態(tài)為經(jīng)分析可知,函數(shù)相比臨界狀態(tài)更靠近軸,則存在點或由題意可知,是一條傾斜角度為,長度為的線段可在圓上找到兩條與之平行且等長的弦如果落在弧上,或者落在弧上,則成立當(dāng)時,到弧的最小距離為此時當(dāng)時,到弧的最小距離為此時綜上【點睛】本題是圓的綜合題,主要考查了一次函數(shù)的性質(zhì)、圓的基本知識、三角形相似的判定與性質(zhì)、新定義等,數(shù)形結(jié)合是本題解題的關(guān)鍵.4.如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉(zhuǎn)動,轉(zhuǎn)過的角度記作α;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:(1)探究:若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時,圓心O′到射線AB的距離是;如圖2,當(dāng)α=°時,半圓O與射線AB相切;(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.(3)發(fā)現(xiàn):如圖4,在0°<α<90°時,為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關(guān)系,請你幫助他直接寫出這個關(guān)系;cosα=(用含有R、m的代數(shù)式表示)(4)拓展:如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個交點時,α的取值范圍,并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)解析:(1)+1;60°;(2)4+2;(3);(4)m2.【詳解】試題分析:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.如圖2中,設(shè)切點為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,在Rt△O′EM中,由sinα=,推出α=60°.(2)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題.(3)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.列出方程即可解決問題、(4)當(dāng)半圓與射線AB相切時,之后開始出現(xiàn)兩個交點,此時α=90°;當(dāng)N′落在AB上時,為半圓與AB有兩個交點的最后時刻,此時∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個交點時,α的取值范圍是:90°<α≤120°.當(dāng)N′落在AB上時,陰影部分面積最大,求出此時的面積即可.試題解析:(1)如圖1中,作O′E⊥AB于E,MF⊥O′E于F.則四邊形AMFE是矩形,EF=AM=1.想辦法求出O′E的長即可.在Rt△MFO′中,∵∠MOF=30°,MO′=2,∴O′F=O′M?cos30°=,O′E=+1,∴點O′到AB的距離為+1.如圖2中,設(shè)切點為F,連接O′F,作O′E⊥OA于E,則四邊形O′EAF是矩形,∴AE=O′F=2,∵AM=1,∴EM=1,在Rt△O′EM中,sinα=,∴α=60°故答案為+1,60°.(2)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.∵O′P=R,∴R=R+1,∴R=4+2.(3)設(shè)切點為P,連接O′P,作MQ⊥O′P,則四邊形APQM是矩形.在Rt△O′QM中,O′Q=R?cosα,QP=m,∵O′P=R,∴R?cosα+m=R,∴cosα=.故答案為.(4)如圖5中,當(dāng)半圓與射線AB相切時,之后開始出現(xiàn)兩個交點,此時α=90°;當(dāng)N′落在AB上時,為半圓與AB有兩個交點的最后時刻,此時∵MN′=2AM,所以∠AMN′=60°,所以,α=120°因此,當(dāng)半圓弧線與射線AB有兩個交點時,α的取值范圍是:90°<α≤120°故答案為90°<α≤120°;當(dāng)N′落在AB上時,陰影部分面積最大,所以S═﹣?m?m=m2.5.如圖1,兩個完全相同的三角形紙片和重合放置,其中,.(1)操作發(fā)現(xiàn):如圖2,固定,使繞點旋轉(zhuǎn),當(dāng)點恰好落在邊上時,填空:①線段與的位置關(guān)系是________;②設(shè)的面積為,的面積為,則與的數(shù)量關(guān)系是_____.(2)猜想論證:當(dāng)繞點旋轉(zhuǎn)到如圖3所示的位置時,請猜想(1)中與的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請說明理由.(3)拓展探究:已知,平分,,,交于點(如圖4).若在射線上存在點,使,請求相應(yīng)的的長.解析:(1)DE∥AC;S1=S2;(2)成立,證明見解析;(3)BF的長為3或6.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行解答;②根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點C到AB的距離等于點D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;(3)過點D作DF1∥BE,求出四邊形BEDF1是菱形,根據(jù)菱形的對邊相等可得BE=DF1,然后根據(jù)等底等高的三角形的面積相等可知點F1為所求的點,過點D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據(jù)全等三角形的面積相等可得點F2也是所求的點,然后勾股定理求出EG的長,即可得解【詳解】(1)①∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等邊三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案為:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;故答案為:S1=S2;(2)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此時S△DCF1=S△BDE;過點D作DF2⊥BD,∵∠ABC=60°,F(xiàn)1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等邊三角形,∴DF1=DF2,過點D作DG⊥BC于G,∵BD=CD,∠ABC=60°,點D是角平分線上一點,∴∠DBC=∠DCB=×60°=30°,BG=BC=,∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴點F2也是所求的點,∵∠ABC=60°,點D是角平分線上一點,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,∴∠CDE=360°-∠CDF2-∠F2DB-DBE=360°-150°-90°-30°=90°,∴∠CDG=90°-∠DCG=60°,又∵BD=CD=3,∴DG=,設(shè)EG為x,則DE=2x,,解得x=1.5,∴BE=BG-EG=4.5-1.5=3,∴BF1=3,BF2=BF1+F1F2=3+3=6,故BF的長為3或6.【點睛】此題考查全等三角形的判定與性質(zhì),三角形的面積,等邊三角形的判定與性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,(3)要注意符合條件的點F有兩個.6.如圖①,在中,為邊上一點,過點作交于點,連接,為的中點,連接.(觀察猜想)(1)①的數(shù)量關(guān)系是___________②的數(shù)量關(guān)系是______________(類比探究)(2)將圖①中繞點逆時針旋轉(zhuǎn),如圖②所示,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;(拓展遷移)(3)將繞點旋轉(zhuǎn)任意角度,若,請直接寫出點在同一直線上時的長.解析:(1)①;②;(2)成立,證明見解析;(3)的長為或【分析】(1)①根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可得到答案;②由①知,利用等邊對等角和三角形的外角性質(zhì),得到,,然后即可得到答案;(2)①過點作交的延長線于點,EF與交于點,利用等腰直角三角形的性質(zhì),證明,即可得到結(jié)論成立;②由全等三角形的性質(zhì),求出∠OEC=90°,即可得到結(jié)論成立;(3)根據(jù)旋轉(zhuǎn)的性質(zhì),點在同一直線上可分為兩種情況:①點C在線段OB上;②點C在OB的延長線上;利用等腰直角三角形的性質(zhì),分別求出OE的長度,即可得到答案.【詳解】解:(1)如圖,在△AOD和△ACD中,∵,為AD中點,,,E為AD中點,,;②,為AD中點,,∴;同理可得:,,.(2)成立.證明:①如圖,過點作交的延長線于點與交于點,∵是等腰三角形,∴∵,∴,∴,∴均為等腰直角三角形,∴,又∵,∴,∴;②,∴,,,;(3)的長為或;∵在等腰直角中,,,由(2)可知,,,∴是等腰直角三角形,∴;當(dāng)點在同一直線上時,有①點C在線段OB上;如圖:∴,∴;②點C在OB的延長線上;如圖:∴,∴;綜上所述,的長為或;【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定和性質(zhì),解直角三角形,全等三角形的判定和性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,以及三角形的外角性質(zhì)等,綜合能力強,知識的運用廣泛.解題的關(guān)鍵是熟練掌握所學(xué)的性質(zhì)進行解題,注意運用數(shù)形結(jié)合的思想和分類討論的思想進行分析.7.觀察猜想:(1)如圖1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,點D與點C重合,點E在斜邊AB上,連接DE,且DE=AE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到線段DF,連接EF,則=______,sin∠ADE=________,探究證明:(2)在(1)中,如果將點D沿CA方向移動,使CD=AC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.拓展延伸(3)如圖3,在△ABC中,∠ACB=90°,∠CAB=a,點D在邊AC的延長線上,E是AB上任意一點,連接DE.ED=nAE,將線段DE繞著點D順時針旋轉(zhuǎn)90°至點F,連接EF.求和sin∠ADE的值分別是多少?(請用含有n,a的式子表示)解析:(1);;(2)不變;(3)=;sin∠ADE=.【分析】(1)由等腰三角形的性質(zhì)和等邊三角形的判定得到∠A=∠ACE=30°,△BEC是等邊三角形,據(jù)此求得CE的長度,根據(jù)等腰直角三角形的性質(zhì)來求EF的長度,易得答案;(2)不變.理由:如圖2,過點D作DG∥BC交AB于點G,構(gòu)造直角三角形:△ADG,結(jié)合含30度角的直角三角形的性質(zhì)和銳角三角函數(shù)的定義,結(jié)合方程求得答案;(3)如圖3,過點E作EG⊥AD于點G,構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的定義列出方程并解答.【詳解】(1)如圖1,∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠B=60°.又CE=AE,∴∠ACE=∠A=30°,∴∠BCE=60°,∴△BEC是等邊三角形,∴BE=CE.∴AE=CE=BE.∴AD=AB=CE.又由旋轉(zhuǎn)的性質(zhì)知:FC=EC,∠FCE=90°,∴EF=CE,∴==.∵∠ADE=30°,∴sin∠ADE=.故答案是:;;(2)不變,理由:如圖2,過點D作DG∥BC交AB于點G,則△ADG是直角三角形.∵∠DAG=30°,DE=AE,設(shè)DG=x,∴∠AED=30°,AD=x,∠DEG=∠DGE=60°.∴DE=DF=x,sin∠ADE=.∵∠EDF=90°,∴EF=x.∴==.∵∠ADE=30°,∴sin∠ADE=.(3)過點E作EG⊥AD于點G,設(shè)AE=x,則DE=nx.∵∠CAB=a,∴AG=cosα?x,EG=sinα?x.∴DG==?x.∴AD=cosα?x+?x.∵∠EDF=90°,DE=DF,∴EF=DE=nx.∴==,sin∠ADE===.【點睛】本題考查了等腰三角形的性質(zhì)和等邊三角形的判定,作輔助線構(gòu)造直角三角形,根據(jù)銳角三角函數(shù)的定義求解.8.(1)探究發(fā)現(xiàn):下面是一道例題及解答過程,請補充完整:如圖①在等邊△ABC內(nèi)部,有一點P,若∠APB=150°,求證:AP2+BP2=CP2證明:將△APC繞A點逆時針旋轉(zhuǎn)60°,得到△AP’B,連接PP’,則△APP’為等邊三角形∴∠APP’=60°,PA=PP’,PC=∵∠APB=150°,∴∠BPP’=90°∴P’P2+BP2=,即PA2+PB2=PC2(2)類比延伸:如圖②在等腰△ABC中,∠BAC=90°,內(nèi)部有一點P,若∠APB=135°,試判斷線段PA,PB,PC之間的數(shù)量關(guān)系,并證明.(3)聯(lián)想拓展:如圖③在△ABC中,∠BAC=120°,AB=AC,點P在直線AB上方,且∠APB=60°,滿足(kPA)2+PB2=PC2(其中k>0),請直接寫出k的值.解析:(1)P’B,P’B2;(2)2PA2+PB2=PC2,見解析;(3)k=【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理直接寫出即可.(2)將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP′B,連接PP′,論證PP′=2PA,再根據(jù)勾股定理代換即可.(3)將△APC繞A點順時針旋轉(zhuǎn)120°得到△AP′B,連接PP′,過點A作AH⊥PP′,論證PP′=PA,再根據(jù)勾股定理代換即可.【詳解】(1)PC=P’B,P’P2+BP2=P’B2(2)關(guān)系式為:2PA2+PB2=PC2證明:將△APC繞A點逆時針旋轉(zhuǎn)90°,得到△AP’B,連接PP’,則△APP’為等腰直角三角形,∴∠APP’=45°,PP’=PA,PC=P’B,∵∠APB=135°,∴∠BPP’=90°,∴P’P2+BP2=P’B2,∴2PA2+PB2=PC2.(3)k=將△APC繞點A順時針旋轉(zhuǎn)120°得到△AP’B,連接PP’,過點A作AH⊥PP’,可得【點睛】本題考查了旋轉(zhuǎn)三角形的問題,掌握旋轉(zhuǎn)的性質(zhì)、勾股定理是解題的關(guān)鍵.9.(基礎(chǔ)鞏固)(1)如圖①,,求證:.(嘗試應(yīng)用)(2)如圖②,在菱形中,,點E,F(xiàn)分別為邊上兩點,將菱形沿翻折,點A恰好落在對角線上的點P處,若,求的值.(拓展提高)(3)如圖③,在矩形中,點P是邊上一點,連接,若,求的長.解析:(1)見解析;(2);(3).【分析】(1)由證明,再根據(jù)相似三角形的判定方法解題即可;(2)由菱形的性質(zhì),得到,,繼而證明是等邊三角形,結(jié)合(1)中相似三角形對應(yīng)邊成比例的性質(zhì),設(shè),則可整理得到,據(jù)此解題;(3)在邊上取點E,F(xiàn),使得,由矩形的性質(zhì),得到,結(jié)合(1)中相似三角形對應(yīng)邊成比例的性質(zhì)解題即可.【詳解】解:(1)證明:∵,∴,即,∵,∴;(2)∵四邊形是菱形,∴,∴,∴是等邊三角形,∴,由(1)得,,∴,設(shè),則∴,可得①,②,①-②,得,∴,∴的值為;(3)如圖,在邊上取點E,F(xiàn),使得,設(shè)AB=CD=m,∵四邊形是矩形,∴,∴,=DF,,由(1)可得,,∴,∴,整理,得,解得或(舍去),∴.【點睛】本題考查相似三角形的綜合題、等邊三角形的性質(zhì)、菱形的性質(zhì)、矩形的性質(zhì)等知識,是重要考點,難度一般,掌握相關(guān)知識是解題關(guān)鍵.10.問題背景:已知的頂點在的邊所在直線上(不與,重合).交所在直線于點,交所在直線于點.記的面積為,的面積為.(1)初步嘗試:如圖①,當(dāng)是等邊三角形,,,且,時,則;(2)類比探究:在(1)的條件下,先將點沿平移,使,再將繞點旋轉(zhuǎn)至如圖②所示位置,求的值;(3)延伸拓展:當(dāng)是等腰三角形時,設(shè).(I)如圖③,當(dāng)點在線段上運動時,設(shè),,求的表達式(結(jié)果用,和的三角函數(shù)表示).(II)如圖④,當(dāng)點在的延長線上運動時,設(shè),,直接寫出的表達式,不必寫出解答過程.解析:(1)12;(2)12;(3)(ab)2sin2α.(ab)2sin2α.【解析】試題分析:(1)首先證明△ADM,△BDN都是等邊三角形,可得S1=?22=,S2=?(4)2=4,由此即可解決問題;(2)如圖2中,設(shè)AM=x,BN=y.首先證明△AMD∽△BDN,可得,推出,推出xy=8,由S1=?AD?AM?sin60°=x,S2=DB?sin60°=y,可得S1?S2=x?y=xy=12;(3)Ⅰ如圖3中,設(shè)AM=x,BN=y,同法可證△AMD∽△BDN,可得xy=ab,由S1=?AD?AM?sinα=axsinα,S2=DB?BN?sinα=bysinα,可得S1?S2=(ab)2sin2α.(Ⅱ)結(jié)論不變,證明方法類似;試題解析:(1)如圖1中,∵△ABC是等邊三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等邊三角形,∴S1=?22=,S2=?(4)2=4,∴S1?S2=12,(2)如圖2中,設(shè)AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴,∴,∴xy=8,∵S1=?AD?AM?sin60°=x,S2=DB?sin60°=y,∴S1?S2=x?y=xy=12.(3)Ⅰ如圖3中,設(shè)AM=x,BN=y,同法可證△AMD∽△BDN,可得xy=ab,∵S1=?AD?AM?sinα=axsinα,S2=DB?BN?sinα=bysinα,∴S1?S2=(ab)2sin2α.Ⅱ如圖4中,設(shè)AM=x,BN=y,同法可證△AMD∽△BDN,可得xy=ab,∵S1=?AD?AM?sinα=axsinα,S2=DB?BN?sinα=bysinα,∴S1?S2=(ab)2sin2α.考點:幾何變換綜合題.11.(知識再現(xiàn))學(xué)完《全等三角形》一章后,我們知道“斜邊和一條直角邊分別相等的兩個直角三角形全等(簡稱HL定理)”是判定直角三角形全等的特有方法.(簡單應(yīng)用)如圖(1),在△ABC中,∠BAC=90°,AB=AC,點D、E分別在邊AC、AB上.若CE=BD,則線段AE和線段AD的數(shù)量關(guān)系是.(拓展延伸)在△ABC中,∠BAC=(90°<<180°),AB=AC=m,點D在邊AC上.(1)若點E在邊AB上,且CE=BD,如圖(2)所示,則線段AE與線段AD相等嗎?如果相等,請給出證明;如果不相等,請說明理由.(2)若點E在BA的延長線上,且CE=BD.試探究線段AE與線段AD的數(shù)量關(guān)系(用含有a、m的式子表示),并說明理由.解析:【簡單應(yīng)用】AE=AD;【拓展延伸】(1)相等,證明見解析;(2)AE﹣AD=2AC?cos(180°﹣),理由見解析【分析】簡單應(yīng)用:證明Rt△ABD≌Rt△ACE(HL),可得結(jié)論.拓展延伸:(1)結(jié)論:AE=AD.如圖(2)中,過點C作CM⊥BA交BA的延長線于M,過點N作BN⊥CA交CA的延長線于N.證明△CAM≌△BAN(AAS),推出CM=BN,AM=AN,證明Rt△CME≌Rt△BND(HL),推出EM=DN,可得結(jié)論.(2)如圖(3)中,結(jié)論:AE﹣AD=2m?cos(180°﹣).在AB上取一點E′,使得BD=CE′,則AD=AE′.過點C作CT⊥AE于T.證明TE=TE′,求出AT,可得結(jié)論.【詳解】簡單應(yīng)用:解:如圖(1)中,結(jié)論:AE=AD.理由:∵∠A=∠A=90°,AB=AC,BD=CE,∴Rt△ABD≌Rt△ACE(HL),∴AD=AE.故答案為:AE=AD.拓展延伸:(1)結(jié)論:AE=AD.理由:如圖(2)中,過點C作CM⊥BA交BA的延長線于M,過點N作BN⊥CA交CA的延長線于N.∵∠M=∠N=90°,∠CAM=∠BAN,CA=BA,∴△CAM≌△BAN(AAS),∴CM=BN,AM=AN,∵∠M=∠N=90°,CE=BD,CM=BN,∴Rt△CME≌Rt△BND(HL),∴EM=DN,∵AM=AN,∴AE=AD.(2)如圖(3)中,結(jié)論:AE﹣AD=2m?cos(180°﹣).理由:在AB上取一點E′,使得BD=CE′,則AD=AE′.過點C作CT⊥AE于T.∵CE′=BD,CE=BD,∴CE=CE′,∵CT⊥EE′,∴ET=TE′,∵AT=AC?cos(180°﹣)=m?cos(180°﹣),∴AE﹣AD=AE﹣AE′=2AT=2m?cos(180°﹣).【點睛】本題主要考查了全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解直角三角形等知識,解題的關(guān)鍵在于能夠熟練尋找全等三角形解決問題.12.《函數(shù)的圖象與性質(zhì)》拓展學(xué)習(xí)片段展示:(問題)如圖①,在平面直角坐標(biāo)系中,拋物線y=a(x﹣2)2﹣經(jīng)過原點O,與x軸的另一個交點為A,則a=.(操作)將圖①中拋物線在x軸下方的部分沿x軸折疊到x軸上方,將這部分圖象與原拋物線剩余部分的圖象組成的新圖象記為G,如圖②.直接寫出圖象G對應(yīng)的函數(shù)解析式.(探究)在圖②中,過點B(0,1)作直線l平行于x軸,與圖象G的交點從左至右依次為點C,D,E,F(xiàn),如圖③.求圖象G在直線l上方的部分對應(yīng)的函數(shù)y隨x增大而增大時x的取值范圍.(應(yīng)用)P是圖③中圖象G上一點,其橫坐標(biāo)為m,連接PD,PE.直接寫出△PDE的面積不小于1時m的取值范圍.解析:【問題】:a=;【操作】:y=;【探究】:當(dāng)1<x<2或x>2+時,函數(shù)y隨x增大而增大;【應(yīng)用】:m=0或m=4或m≤2﹣或m≥2+.【詳解】試題分析:【問題】:把(0,0)代入可求得a的值;【操作】:先寫出沿x軸折疊后所得拋物線的解析式,根據(jù)圖象可得對應(yīng)取值的解析式;【探究】:令y=0,分別代入兩個拋物線的解析式,分別求出四個點CDEF的坐標(biāo),根據(jù)圖象呈上升趨勢的部分,即y隨x增大而增大,寫出x的取值;【應(yīng)用】:先求DE的長,根據(jù)三角形面積求高的取值h≥1;分三部分進行討論:①當(dāng)P在C的左側(cè)或F的右側(cè)部分時,設(shè)P[m,],根據(jù)h≥1,列不等式解出即可;②如圖③,作對稱軸由最大面積小于1可知:點P不可能在DE的上方;③P與O或A重合時,符合條件,m=0或m=4.試題解析:【問題】∵拋物線y=a(x﹣2)2﹣經(jīng)過原點O,∴0=a(0﹣2)2﹣,a=;【操作】:如圖①,拋物線:y=(x﹣2)2﹣,對稱軸是:直線x=2,由對稱性得:A(4,0),沿x軸折疊后所得拋物線為:y=﹣(x﹣2)2+如圖②,圖象G對應(yīng)的函數(shù)解析式為:y=;【探究】:如圖③,由題意得:當(dāng)y=1時,(x﹣2)2﹣=0,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(xiàn)(2+,1),當(dāng)y=1時,﹣(x﹣2)2+=0,解得:x1=3,x2=1,∴D(1,1),E(3,1),由圖象得:圖象G在直線l上方的部分,當(dāng)1<x<2或x>2+時,函數(shù)y隨x增大而增大;【應(yīng)用】:∵D(1,1),E(3,1),∴DE=3﹣1=2,∵S△PDE=DE?h≥1,∴h≥1;①當(dāng)P在C的左側(cè)或F的右側(cè)部分時,設(shè)P[m,],∴h=(m﹣2)2﹣﹣1≥1,(m﹣2)2≥10,m﹣2≥或m﹣2≤﹣,m≥2+或m≤2﹣,②如圖③,作對稱軸交拋物線G于H,交直線CD于M,交x軸于N,∵H(2,),∴HM=﹣1=<1,∴當(dāng)點P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P與O或A重合時,符合條件,∴m=0或m=4;綜上所述,△PDE的面積不小于1時,m的取值范圍是:m=0或m=4或m≤2﹣或m≥2+.考點:二次函數(shù)綜合題.13.如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當(dāng)點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S2.則S1與S2的數(shù)量關(guān)系是.(2)猜想論證當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.(3)拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長解析:解:(1)①DE∥AC.②.(2)仍然成立,證明見解析;(3)或.【詳解】(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=60°.∴△ADC是等邊三角形.∴∠DCA=60°.∴∠DCA=∠CDE=60°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=2AC.又∵AD=AC∴BD=AC.∵∴.(2)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此時S△DCF1=S△BDE;過點D作DF2⊥BD,∵∠ABC=60°,F(xiàn)1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等邊三角形,∴DF1=DF2,過點D作DG⊥BC于G,∵BD=CD,∠ABC=60°,點D是角平分線上一點,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴點F2也是所求的點,∵∠ABC=60°,點D是角平分線上一點,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=,∴BF1=,BF2=BF1+F1F2=+=,故BF的長為或.14.(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.
填空:線段AD,BE之間的關(guān)系為
.(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關(guān)系,并說明理由.
(3)解決問題
如圖3,線段PA=3,點B是線段PA外一點,PB=5,連接AB,將AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,隨著點B的位置的變化,直接寫出PC的范圍.
解析:(1)AD=BE,AD⊥BE.(2)AD=BE,AD⊥BE.(3)5-3≤PC≤5+3.【分析】(1)根據(jù)等腰三角形性質(zhì)證△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延長BE交AD于點F,由垂直定義得AD⊥BE.(2)根據(jù)等腰三角形性質(zhì)證△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定義得∠OHB=90°,AD⊥BE;(3)作AE⊥AP,使得AE=PA,則易證△APE≌△ACP,PC=BE,當(dāng)P、E、B共線時,BE最小,最小值=PB-PE;當(dāng)P、E、B共線時,BE最大,最大值=PB+PE,故5-3≤BE≤5+3.【詳解】(1)結(jié)論:AD=BE,AD⊥BE.理由:如圖1中,∵△ACB與△DCE均為等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ACD=90°,在Rt△ACD和Rt△BCE中∴△ACD≌△BCE(SAS),∴AD=BE,∠EBC=∠CAD延長BE交AD于點F,∵BC⊥AD,∴∠EBC+∠CEB=90°,∵∠CEB=AEF,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD⊥BE.∴AD=BE,AD⊥BE.故答案為AD=BE,AD⊥BE.(2)結(jié)論:AD=BE,AD⊥BE.理由:如圖2中,設(shè)AD交BE于H,AD交BC于O.∵△ACB與△DCE均為等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∴ACD=∠BCE,在Rt△ACD和Rt△BCE中,∴△ACD≌△BCE(SAS),∴AD=BE,∠CAD=∠CBE,∵∠CAO+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD⊥BE,∴AD=BE,AD⊥BE.(3)如圖3中,作AE⊥AP,使得AE=PA,則易證△APE≌△ACP,∴PC=BE,圖3-1中,當(dāng)P、E、B共線時,BE最小,最小值=PB-PE=5-3,圖3-2中,當(dāng)P、E、B共線時,BE最大,最大值=PB+PE=5+3,∴5-3≤BE≤5+3,即5-3≤PC≤5+3.【點睛】本題是幾何變換綜合題,考查了旋轉(zhuǎn)的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找三角形全等的條件,學(xué)會添加輔助線,構(gòu)造全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考壓軸題.15.(1)(探究發(fā)現(xiàn))如圖1,的頂點在正方形兩條對角線的交點處,,將繞點旋轉(zhuǎn),旋轉(zhuǎn)過程中,的兩邊分別與正方形的邊和交于點和點(點與點,不重合).則之間滿足的數(shù)量關(guān)系是.(2)(類比應(yīng)用)如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當(dāng)時,上述結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請猜想結(jié)論并說明理由.(3)(拓展延伸)如圖3,,,,平分,,且,點是上一點,,求的長.解析:(1)(2)結(jié)論不成立.(3)【分析】(1)結(jié)論:.根據(jù)正方形性質(zhì),證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(2)結(jié)論不成立..連接,在上截取,連接.根據(jù)菱形性質(zhì),證,四點共圓,分別證是等邊三角形,是等邊三角形,根據(jù)等邊三角形性質(zhì)證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(3)由可知是鈍角三角形,,作于,設(shè).根據(jù)勾股定理,可得到,由,得四點共圓,再證是等邊三角形,由(2)可知:,故可得.【詳解】(1)如圖1中,結(jié)論:.理由如下:∵四邊形是正方形,∴,,,∵,∴,∴,∴,∴.故答案為.(2)如圖2中,結(jié)論不成立..理由:連接,在上截取,連接.∵四邊形是菱形,,∴,∵,∴四點共圓,∴,∵,∴是等邊三角形,∴,,∵,,∴是等邊三角形,∴,,∴,∴,∴,∴,(3)如圖3中,由可知是鈍角三角形,,作于,設(shè).在中,,∵,∴,解得(舍棄)或,∴,∵,∴四點共圓,∵平分,∴,∴,∵,∴是等邊三角形,由(2)可知:,∴.【點睛】考核知識點:正方形性質(zhì),全等三角形判定和性質(zhì),等邊三角形判定和性質(zhì),圓的性質(zhì).綜合運用各個幾何性質(zhì)定理是關(guān)鍵;此題比較綜合.16.性質(zhì)探究如圖①,在等腰三角形中,,則底邊與腰的長度之比為________.理解運用⑴若頂角為120°的等腰三角形的周長為,則它的面積為________;⑵如圖②,在四邊形中,.①求證:;②在邊上分別取中點,連接.若,,直接寫出線段的長.類比拓展頂角為的等腰三角形的底邊與一腰的長度之比為________(用含的式子表示).解析:性質(zhì)探究:;理解運用:(1);(2)①見解析;②;類比拓展:.【分析】性質(zhì)探究:作CD⊥AB于D,則∠ADC=∠BDC=90°,由等腰三角形的性質(zhì)得出AD=BD,∠A=∠B=30°,由直角三角形的性質(zhì)得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出結(jié)果;理解運用:(1)同上得出則AC=2CD,AD=CD,由等腰三角形的周長得出4CD+2CD=8+4,解得:CD=2,得出AB=4,由三角形面積公式即可得出結(jié)果;(2)①由等腰三角形的性質(zhì)得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;②連接FH,作EP⊥FH于P,由等腰三角形的性質(zhì)得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四邊形內(nèi)角和定理求出∠FEH=120°,由等腰三角形的性質(zhì)得出∠EFH=30°,由直角三角形的性質(zhì)得出PE=EF=5,PF=PE=5,得出FH=2PF=10,證明MN是△FGH的中位線,由三角形中位線定理即可得出結(jié)果;類比拓展:作AD⊥BC于D,由等腰三角形的性質(zhì)得出BD=CD,∠BAD=∠BAC=α,由三角函數(shù)得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出結(jié)果.【詳解】性質(zhì)探究解:作CD⊥AB于D,如圖①所示:則∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴=;故答案為;理解運用(1)解:如圖①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=8+4,∴4CD+2CD=8+4,解得:CD=2,∴AB=4,∴△ABC的面積=AB×CD=×4×2=4;故答案為4(2)①證明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:連接FH,作EP⊥FH于P,如圖②所示:則PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=5,∴PF=PE=5,∴FH=2PF=10,∵點M、N分別是FG、GH的中點,∴MN是△FGH的中位線,∴MN=FH=5;類比拓展解:如圖③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵sinα=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴=2sinα;故答案為2sinα.【點睛】本題是四邊形綜合題目,考查了等腰三角形的性質(zhì)、直角三角形的性質(zhì)、三角形中位線定理、四邊形內(nèi)角和定理、就直角三角形等知識;本題綜合性強,熟練掌握等腰三角形的性質(zhì)和含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.17.如圖1,△ABC和△DCE都是等邊三角形.探究發(fā)現(xiàn)(1)△BCD與△ACE是否全等?若全等,加以證明;若不全等,請說明理由.拓展運用(2)若B、C、E三點不在一條直線上,∠ADC=30°,AD=3,CD=2,求BD的長.(3)若B、C、E三點在一條直線上(如圖2),且△ABC和△DCE的邊長分別為1和2,求△ACD的面積及AD的長.解析:(1)全等,理由見解析;(2)BD=;(3)△ACD的面積為,AD=.【分析】(1)依據(jù)等式的性質(zhì)可證明∠BCD=∠ACE,然后依據(jù)SAS可證明△ACE≌△BCD;(2)由(1)知:BD=AE,利用勾股定理計算AE的長,可得BD的長;(3)過點A作AF⊥CD于F,先根據(jù)平角的定義得∠ACD=60°,利用特殊角的三角函數(shù)可得AF的長,由三角形面積公式可得△ACD的面積,最后根據(jù)勾股定理可得AD的長.【詳解】解:(1)全等,理由是:∵△ABC和△DCE都是等邊三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS);(2)如圖3,由(1)得:△BCD≌△ACE,∴BD=AE,∵△DCE都是等邊三角形,∴∠CDE=60°,CD=DE=2,∵∠ADC=30°,∴∠ADE=∠ADC+∠CDE=30°+60°=90°,在Rt△ADE中,AD=3,DE=2,∴,∴BD=;(3)如圖2,過點A作AF⊥CD于F,∵B、C、E三點在一條直線上,∴∠BCA+∠ACD+∠DCE=180°,∵△ABC和△DCE都是等邊三角形,∴∠BCA=∠DCE=60°,∴∠ACD=60°,在Rt△ACF中,sin∠ACF=,∴AF=AC×sin∠ACF=,∴S△ACD=,∴CF=AC×cos∠ACF=1×,F(xiàn)D=CD﹣CF=,在Rt△AFD中,AD2=AF2+FD2=,∴AD=.【點睛】本題考查等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),解直角三角形,勾股定理等,第(3)小題巧作輔助線構(gòu)造直角三角形是解題的關(guān)鍵.18.性質(zhì)探究如圖(1),在等腰三角形中,,則底邊與腰的長度之比為_________.理解運用(1)若頂角為的等腰三角形的周長為,則它的面積為_________;(2)如圖(2),在四邊形中,.在邊,上分別取中點,連接.若,,求線段的長.類比拓展頂角為的等腰三角形的底邊與一腰的長度之比為__________(用含的式子表示)解析:性質(zhì)探究:(或);理解運用:(1);(2);類比拓展:(或).【分析】性質(zhì)探究作CD⊥AB于D,則∠ADC=∠BDC=90°,由等腰三角形的性質(zhì)得出AD=BD,∠A=∠B=30°,由直角三角形的性質(zhì)得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出結(jié)果;理解運用(1)同上得出則AC=2CD,AD=CD,由等腰三角形的周長得出4CD+2CD=4+2,解得:CD=1,得出AB=2,由三角形面積公式即可得出結(jié)果;(2)①由等腰三角形的性質(zhì)得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;②連接FH,作EP⊥FH于P,由等腰三角形的性質(zhì)得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四邊形內(nèi)角和定理求出∠FEH=120°,由等腰三角形的性質(zhì)得出∠EFH=30°,由直角三角形的性質(zhì)得出PE=EF=10,PF=PE=10,得出FH=2PF=20,證明MN是△FGH的中位線,由三角形中位線定理即可得出結(jié)果;類比拓展作AD⊥BC于D,由等腰三角形的性質(zhì)得出BD=CD,∠BAD=∠BAC=α,由三角函數(shù)得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出結(jié)果.【詳解】性質(zhì)探究解:作CD⊥AB于D,如圖①所示:則∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴;故答案為:(或);理解運用(1)解:如圖①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=4+2,∴4CD+2CD=4+2,解得:CD=1,∴AB=2,∴△ABC的面積=AB×CD=×2×1=;故答案為:(2)①證明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:連接FH,作EP⊥FH于P,如圖②所示:則PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=10,∴PF=PE=10,∴FH=2PF=20,∵點M、N分別是FG、GH的中點,∴MN是△FGH的中位線,∴MN=FH=10;類比拓展解:如圖③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴;故答案為:2sinα(或).【點睛】本題是四邊形綜合題目,考查了等腰三角形的性質(zhì)、直角三角形的性質(zhì)、三角形中位線定理、四邊形內(nèi)角和定理、解直角三角形等知識;本題綜合性強,熟練掌握等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 多組學(xué)技術(shù)在罕見病精準(zhǔn)診斷中的突破
- 2025年高職(快遞運營管理)快遞客服實務(wù)階段測試題及答案
- 2026年方便面包裝(密封包裝)試題及答案
- 2025年高職(建筑工程技術(shù)專業(yè))混凝土施工試題及答案
- 2025年大學(xué)護理學(xué)(護理教育導(dǎo)論)試題及答案
- 2026年秘書工作(會議組織技巧)試題及答案
- 2026年洗車服務(wù)(車輛清潔)試題及答案
- 2025年中職旅游服務(wù)與管理(旅行社運營基礎(chǔ))試題及答案
- 2026年口腔正畸(隱形矯正護理)試題及答案
- 2026年大頭菜加工機維修(加工機故障排除)試題及答案
- 老年人高血壓的護理
- 糧油產(chǎn)品授權(quán)書
- 責(zé)任督學(xué)培訓(xùn)課件
- 關(guān)于安吉物流市場的調(diào)查報告
- 抑郁病診斷證明書
- 心電監(jiān)測技術(shù)操作考核評分標(biāo)準(zhǔn)
- 歷史時空觀念的教學(xué)與評價
- 維克多高中英語3500詞匯
- 《LED顯示屏基礎(chǔ)知識培訓(xùn)》
- 第五屆全國輔導(dǎo)員職業(yè)能力大賽案例分析與談心談話試題(附答案)
- LY/T 2501-2015野生動物及其產(chǎn)品的物種鑒定規(guī)范
評論
0/150
提交評論