考點(diǎn)解析-遼寧省海城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向攻克試卷_第1頁(yè)
考點(diǎn)解析-遼寧省海城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向攻克試卷_第2頁(yè)
考點(diǎn)解析-遼寧省海城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向攻克試卷_第3頁(yè)
考點(diǎn)解析-遼寧省海城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向攻克試卷_第4頁(yè)
考點(diǎn)解析-遼寧省海城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向攻克試卷_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省海城市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,由6個(gè)相同小正方形組成的網(wǎng)格中,A,B,C均在格點(diǎn)上,則∠ABC的度數(shù)為(

)A.45° B.50° C.55° D.60°2、如圖所示,將一根長(zhǎng)為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長(zhǎng)為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤123、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為A.9 B.6 C.4 D.34、我圖古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問(wèn)水深幾何?(注:丈、尺是長(zhǎng)度單位,1丈=10尺)意思為:如圖,有一個(gè)邊長(zhǎng)為1丈的正方形水池,在水池正中央有一根蘆葦,它高出水面1尺,如果把這根蘆葦拉向水池一邊的岸邊,它的頂端恰好碰到池邊的水面.則這根蘆葦?shù)拈L(zhǎng)度是(

)A.5尺 B.10尺 C.12尺 D.13尺5、下列各組數(shù):①3、4、5

②4、5、6

③2.5、6、6.5

④8、15、17,其中是勾股數(shù)的有(

)A.4組 B.3組 C.2組 D.1組6、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問(wèn)題:

“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長(zhǎng)各幾何?”.其大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺(丈、尺是長(zhǎng)度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?若設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)題意,所列方程正確的是(

)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)27、如圖,在中,,,,平分交于D點(diǎn),E,F(xiàn)分別是,上的動(dòng)點(diǎn),則的最小值為(

)A. B. C.3 D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、把一根長(zhǎng)12厘米的木棒,從一端起順次截下3厘米和5厘米的兩段,用得到的三根木棒首尾依次相接,擺成的三角形形狀是______.2、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測(cè)量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長(zhǎng)度未知.如圖,經(jīng)測(cè)量,繩子多出的部分長(zhǎng)度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為_(kāi)_____米.3、已知,在中,,,,則的面積為_(kāi)_.4、如圖,在中,,,,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線(xiàn)上的點(diǎn)處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則DF的長(zhǎng)為_(kāi)________.5、如圖,某農(nóng)舍的大門(mén)是一個(gè)木制的長(zhǎng)方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對(duì)的頂點(diǎn)間用一塊木板加固,則木板的長(zhǎng)為_(kāi)_______.6、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開(kāi)始時(shí)繩子BC的長(zhǎng)為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長(zhǎng)為10米,問(wèn)船向岸邊移動(dòng)了__米.7、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點(diǎn)C到AB的距離是_______.8、如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它爬的最短距離是_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.2、如圖,,兩個(gè)工廠位于一段直線(xiàn)形河道的異側(cè),工廠至河道的距離為,工廠至河道的距離為,經(jīng)測(cè)量河道上、兩地間的距離為,現(xiàn)準(zhǔn)備在河邊某處(河寬不計(jì))修一個(gè)污水處理廠.(1)設(shè),請(qǐng)用的代數(shù)式表示的長(zhǎng)______;(結(jié)果保留根號(hào))(2)為了使,兩廠到污水處理廠的排污管道之和最短,請(qǐng)?jiān)趫D中畫(huà)出污水廠位置,并求出排污管道最短長(zhǎng)度?(3)通過(guò)以上的解答,充分展開(kāi)聯(lián)想,運(yùn)用數(shù)形結(jié)合思想,請(qǐng)你求出的最小值為多少?3、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線(xiàn)上,為了在小山的兩側(cè)B,C同時(shí)施工,過(guò)點(diǎn)B作一直線(xiàn)m(在山的旁邊經(jīng)過(guò)),過(guò)點(diǎn)C作一直線(xiàn)l與m相交于D點(diǎn),經(jīng)測(cè)量,,米,米.若施工隊(duì)每天挖100米,求施工隊(duì)幾天能挖完?4、如圖,已知和中,,,,點(diǎn)C在線(xiàn)段BE上,連接DC交AE于點(diǎn)O.(1)DC與BE有怎樣的位置關(guān)系?證明你的結(jié)論;(2)若,,求DE的長(zhǎng).5、某海上有一小島,為了測(cè)量小島兩端A,B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖,已知B是CD的中點(diǎn),E是BA延長(zhǎng)線(xiàn)上的一點(diǎn),且∠CED=90°,測(cè)得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過(guò)點(diǎn)C作CF⊥AB交AB的延長(zhǎng)線(xiàn)于點(diǎn)F,求值.6、2020年春季“新冠肺炎”在武漢全面爆發(fā),蔓延全國(guó),危及到人民生命安全,為了積極響應(yīng)國(guó)家防控政策,雙流區(qū)某鎮(zhèn)政府采用了移動(dòng)宣講的形式進(jìn)行宣傳防控措施,如圖,筆直公路的一側(cè)點(diǎn)處有一村莊,村莊到公路的距離為600米,假設(shè)宣講車(chē)周?chē)?000米以?xún)?nèi)能聽(tīng)到廣播宣傳,宣講車(chē)在公路上沿方向行駛時(shí):(1)請(qǐng)問(wèn)村莊能否聽(tīng)到宣傳,請(qǐng)說(shuō)明理由;(2)如果能聽(tīng)到,已知宣講車(chē)的速度是200米/分鐘,那么村莊總共能聽(tīng)到多長(zhǎng)時(shí)間的宣傳?7、我們知道,到線(xiàn)段兩端距離相等的點(diǎn)在線(xiàn)段的垂直平分線(xiàn)上.由此,我們可以引入如下新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線(xiàn)段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長(zhǎng).-參考答案-一、單選題1、A【解析】【分析】連接AC,利用勾股定理分別求出AB、AC、BC,根據(jù)勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根據(jù)三角形內(nèi)角和定理得到答案.【詳解】連接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故選A.【考點(diǎn)】本題考查了等腰三角形,勾股定理的逆定理,解決問(wèn)題的關(guān)鍵是作輔助線(xiàn)構(gòu)建三角形,熟練掌握等腰三角形的定義和性質(zhì),熟練運(yùn)用勾股定理的逆定理判斷直角三角形.2、B【解析】【分析】根據(jù)題意畫(huà)出圖形,先找出h的值為最大和最小時(shí)筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當(dāng)筷子與杯底垂直時(shí)h最大,h最大=24﹣12=12cm.當(dāng)筷子與杯底及杯高構(gòu)成直角三角形時(shí)h最小,如圖所示:此時(shí),AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點(diǎn)】本題考查了勾股定理的實(shí)際應(yīng)用問(wèn)題,解答此題的關(guān)鍵是根據(jù)題意畫(huà)出圖形找出何時(shí)h有最大及最小值,同時(shí)注意勾股定理的靈活運(yùn)用,有一定難度.3、D【解析】【分析】由題意可知:中間小正方形的邊長(zhǎng)為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長(zhǎng).【詳解】解:由題意可知:中間小正方形的邊長(zhǎng)為:,每一個(gè)直角三角形的面積為:,,,或(舍去),故選:D.【考點(diǎn)】本題考查勾股定理,解題的關(guān)鍵是熟練運(yùn)用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.4、D【解析】【分析】依題意,蘆葦?shù)拈L(zhǎng)度為直角三角形的斜邊,水深為一直角邊,另一直角邊為5尺,由勾股定理即可列出方程,進(jìn)而得到答案.【詳解】解:設(shè)水深x尺,則蘆葦?shù)拈L(zhǎng)度為(x+1)尺,依題意,由勾股定理,得:,解得,所以蘆葦?shù)拈L(zhǎng)度為13尺.故選D.【考點(diǎn)】本題考查勾股定理的應(yīng)用,將題目描述問(wèn)題轉(zhuǎn)化成直角三角形求邊長(zhǎng)的問(wèn)題是解題的關(guān)鍵.5、C【解析】【詳解】解:∵32+42=52,①符合勾股數(shù)的定義;∵42+52≠62,②不符合勾股數(shù)的定義;∵2.5和6.5不是正整數(shù),③不符合勾股數(shù)的定義;∵82+152=172,④符合勾股數(shù)的定義,是勾股數(shù)的有:①④,共2組,故選:C.6、C【解析】【分析】設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)勾股定理,即可求解.【詳解】解:設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)題意得:52+(x-1)2=x2故選:C【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,明確題意,準(zhǔn)確構(gòu)造直角三角形是解題的關(guān)鍵.7、D【解析】【分析】利用角平分線(xiàn)構(gòu)造全等,使兩線(xiàn)段可以合二為一,則EC+EF的最小值即為點(diǎn)C到AB的垂線(xiàn)段長(zhǎng)度.【詳解】在AB上取一點(diǎn)G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點(diǎn)共線(xiàn)時(shí),符合要求,此時(shí),作CH⊥AB于H點(diǎn),則CH的長(zhǎng)即為CE+EG的最小值,此時(shí),,∴CH==,即:CE+EF的最小值為,故選:D.【考點(diǎn)】本題考查了角平分線(xiàn)構(gòu)造全等以及線(xiàn)段和差極值問(wèn)題,靈活構(gòu)造輔助線(xiàn)是解題關(guān)鍵.二、填空題1、直角三角形【解析】【分析】首先計(jì)算出第三條鐵絲的長(zhǎng)度,再利用勾股定理的逆定理可證明擺成的三角形是直角三角形.【詳解】解:12-3-5=4(cm),∵32+42=52,∴這三條鐵絲擺成的三角形是直角三角形,故答案為:直角三角形.【考點(diǎn)】此題主要考查了勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形.2、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長(zhǎng)度為xm,則繩子的長(zhǎng)度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.3、2或14#14或2【解析】【分析】過(guò)點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時(shí),②△ABC是銳角三角形時(shí),分別求出AC的長(zhǎng),即可求解.【詳解】解:過(guò)點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時(shí),,;②是銳角三角形時(shí),,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類(lèi)討論思想.4、【解析】【分析】根據(jù)折疊的性質(zhì)可得,,從而得出相應(yīng)角相等,再根據(jù)角之間的關(guān)系得出,從而得出為等腰直角三角形,再根據(jù)勾股定理求出的長(zhǎng)度,利用三角形的面積公式求出的長(zhǎng)度,再求出、的長(zhǎng)度,最后求出的長(zhǎng)度.【詳解】解:∵邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處,∴,∴,,,∵邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線(xiàn)上的點(diǎn)處,∴,∴,∵,∴,∴為等腰直角三角形,∴,∵,,,∴,∵,∴,∴,∴.故答案為:.【考點(diǎn)】本題主要考查了圖形的翻折變化,勾股定理的運(yùn)用,等腰直角三角形的判定,根據(jù)折疊的性質(zhì)求得相應(yīng)的角是解答本題的關(guān)鍵.5、2.5m【解析】【詳解】設(shè)木棒的長(zhǎng)為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長(zhǎng)為2.5m.故答案為2.5m.6、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長(zhǎng),再根據(jù)題意可得CD長(zhǎng),然后再次利用勾股定理計(jì)算出AD長(zhǎng),再利用BD=AB-AD可得BD長(zhǎng).【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動(dòng)了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.7、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長(zhǎng),再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點(diǎn)】本題考查了勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解題的關(guān)鍵8、25【解析】【分析】先將圖形平面展開(kāi),再用勾股定理根據(jù)兩點(diǎn)之間線(xiàn)段最短進(jìn)行解答.【詳解】解:如圖所示:臺(tái)階平面展開(kāi)圖為長(zhǎng)方形,根據(jù)題意得:,,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長(zhǎng)方形的對(duì)角線(xiàn)長(zhǎng).由勾股定理得:,即,∴,故答案為:25.【考點(diǎn)】本題主要考查了平面展開(kāi)圖—最短路徑問(wèn)題,用到臺(tái)階的平面展開(kāi)圖,只要根據(jù)題意判斷出長(zhǎng)方形的長(zhǎng)和寬即可解答.三、解答題1、見(jiàn)解析【解析】【分析】連接AM得到三個(gè)直角三角形,運(yùn)用勾股定理分別表示出AD2、AM2、BM2進(jìn)行代換就可以最后得到所要證明的結(jié)果.【詳解】證明:連接MA,∵M(jìn)D⊥AB,∴AD2=AM2-MD2,BM2=BD2+MD2,∵∠C=90°,∴AM2=AC2+CM2∵M(jìn)為BC中點(diǎn),∴BM=MC.∴AD2=AC2+BD2【考點(diǎn)】本題考查了勾股定理,三次運(yùn)用勾股定理進(jìn)行代換計(jì)算即可求出結(jié)果,另外準(zhǔn)確作出輔助線(xiàn)也是正確解出的重要因素.2、(1)+;(2)污水廠位置見(jiàn)解析,排污管道最短長(zhǎng)度為10km;(3)13【解析】【分析】(1)依據(jù)ED=x,AC⊥CD、BD⊥CD,故根據(jù)勾股定理可用x表示出AE+BE的長(zhǎng);(2)根據(jù)兩點(diǎn)之間線(xiàn)段最短可知連接AB與CD的交點(diǎn)就是污水處理廠E的位置.過(guò)點(diǎn)B作BF⊥AC于F,構(gòu)造出直角三角形,利用勾股定理求出AB的長(zhǎng);(3)根據(jù)AE+BE=+=AB=10,可猜想所求代數(shù)式的值為13.(1)解:在Rt△ACE和Rt△BDE中,根據(jù)勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根據(jù)兩點(diǎn)之間線(xiàn)段最短可知,連接AB與CD的交點(diǎn)就是污水處理廠E的位置,如圖:過(guò)點(diǎn)B作BF⊥AC于F,則有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道最短長(zhǎng)度10km;(3)解:根據(jù)以上推理,可作出下圖:設(shè)ED=x,AC=3,DB=2,CD=12.當(dāng)A、E、B共線(xiàn)時(shí)求出AB的值即為原式最小值.當(dāng)A、E、B共線(xiàn)時(shí),==13,即其最小值為13.故答案為:13.【考點(diǎn)】本題考查了最短路線(xiàn)問(wèn)題,綜合利用了勾股定理,及用數(shù)形結(jié)合的方法求代數(shù)式的值的方法,利用兩點(diǎn)之間線(xiàn)段最短是解決問(wèn)題的關(guān)鍵.3、施工隊(duì)6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊(duì)6天能挖完.【考點(diǎn)】本題考查外角的性質(zhì),勾股定理的應(yīng)用,解題的關(guān)鍵是利用勾股定理求得∠BCD=90°.4、(1),見(jiàn)解析;(2)【解析】【分析】(1)易證,再根據(jù)全等性質(zhì)即可求得;(2)由BC和CE可得BE,再由全等的,再根據(jù)勾股定理即可求得;【詳解】(1).證明:.在和中,.(2),..【考點(diǎn)】本題考查三角形全等和勾股定理,掌握三角形全等條件是解題的關(guān)鍵.5、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據(jù)斜邊的中線(xiàn)等于斜邊的一半求出BE,則AB可求;(2)設(shè)BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點(diǎn),∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設(shè)BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=502-x2=2500-x2,在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即,解得x=14,∴答:值為.【考點(diǎn)】本題主要考查了勾股定理的實(shí)際應(yīng)用的知識(shí),在直角三角形中靈活利用勾股定理是解答本題的關(guān)鍵.6、(1)村莊能聽(tīng)到宣傳,理由見(jiàn)解析;(2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論