版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、一個(gè)不透明的盒子里裝有a個(gè)除顏色外完全相同的球,其中有6個(gè)白球,每次將球充分?jǐn)噭蚝?,任意摸?個(gè)球記下顏色然后再放回盒子里,通過如此大量重復(fù)試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.182、7個(gè)小正方體按如圖所示的方式擺放,則這個(gè)圖形的左視圖是()A.B. C.D.3、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形4、如圖,圓形螺帽的內(nèi)接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm5、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.6、下面的圖形中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7、如圖,在中,,,將繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到,此時(shí)點(diǎn)B的對應(yīng)點(diǎn)D恰好落在BC邊上,則CD的長為()A.1 B.2 C.3 D.48、在不透明口袋內(nèi)裝有除顏色外完全相同的5個(gè)小球,其中紅球2個(gè),白球3個(gè).?dāng)嚢杈鶆蚝?,隨機(jī)抽取一個(gè)小球,是紅球的概率為()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、在一個(gè)不透明的袋子里,有2個(gè)白球和2個(gè)紅球,它們只有顏色上的區(qū)別,從袋子里隨機(jī)摸出兩個(gè)球,則摸到兩個(gè)都是紅球的概率是_______.2、如果一個(gè)扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個(gè)“完美扇形”的周長等于6,那么這個(gè)扇形的面積等于_____.3、在一個(gè)不透明的盒子里裝有若干個(gè)紅球和20個(gè)白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實(shí)驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個(gè).4、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學(xué)史上稱為“希波克拉底月牙”.當(dāng),時(shí),則陰影部分的面積為__________.5、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機(jī)抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.6、如圖,在平面直角坐標(biāo)系xOy中,P為x軸正半軸上一點(diǎn).已知點(diǎn),,為的外接圓.(1)點(diǎn)M的縱坐標(biāo)為______;(2)當(dāng)最大時(shí),點(diǎn)P的坐標(biāo)為______.7、如圖,已知⊙O的半徑為2,弦AB的長度為2,點(diǎn)C是⊙O上一動(dòng)點(diǎn)若△ABC為等腰三角形,則BC2為_______.三、解答題(7小題,每小題0分,共計(jì)0分)1、在同樣的條件下對某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計(jì)發(fā)芽種子數(shù),獲得如下頻數(shù)表.實(shí)驗(yàn)種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計(jì)該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計(jì)約需麥種多少千克(精確到1kg)?2、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點(diǎn)D,過點(diǎn)C作⊙O的切線,與BA的延長線相交于點(diǎn)E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.3、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E在AC上,以AE為直徑的⊙O經(jīng)過點(diǎn)D.(1)求證:①BC是⊙O的切線;②;(2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE=3,試求陰影部分的面積.4、在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為、、(正方形網(wǎng)格中每個(gè)小正方形的邊長是一個(gè)單位長度).(1)將向下平移4個(gè)單位長度得到的,則點(diǎn)的坐標(biāo)是____________;(2)以點(diǎn)B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點(diǎn)的坐標(biāo);(3)若是外接圓,求的半徑.5、在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為.(每個(gè)方格的邊長均為1個(gè)單位長度)(1)畫出關(guān)于原點(diǎn)對稱的圖形,并寫出點(diǎn)的坐標(biāo);(2)畫出繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后的圖形,并寫出點(diǎn)的坐標(biāo);(3)寫出經(jīng)過怎樣的旋轉(zhuǎn)可直接得到.(請將20題(1)(2)小問的圖都作在所給圖中)6、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點(diǎn)P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點(diǎn)Q,,,求PQ的長度.7、在正方形ABCD中,過點(diǎn)B作直線l,點(diǎn)E在直線l上,連接CE,DE,其中,過點(diǎn)C作于點(diǎn)F,交直線l于點(diǎn)H.(1)當(dāng)直線l在如圖①的位置時(shí)①請直接寫出與之間的數(shù)量關(guān)系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時(shí),請寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時(shí),請直接寫出EH的長.-參考答案-一、單選題1、C【分析】在同樣條件下,大量反復(fù)試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗(yàn),a=15是原方程的解故選:C.【點(diǎn)睛】本題利用了用大量試驗(yàn)得到的頻率可以估計(jì)事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.2、C【分析】細(xì)心觀察圖中幾何體擺放的位置,根據(jù)左視圖是從左面看到的圖象判定則可.【詳解】解:從左邊看,是左邊3個(gè)正方形,右邊一個(gè)正方形.故選:C.【點(diǎn)睛】本題考查了三視圖的知識(shí),左視圖是從物體的左面看得到的視圖.3、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.4、D【分析】根據(jù)圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內(nèi)接正六邊形的性質(zhì)可得△AOB是正三角形,過作于設(shè)半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內(nèi)接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點(diǎn)睛】本題考查正多邊形和圓,作邊心距轉(zhuǎn)化為直角三角形的問題是解決問題的關(guān)鍵.5、C【分析】根據(jù)中心對稱圖形的定義進(jìn)行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項(xiàng)不符合題意;B、不是中心對稱圖形,故此選項(xiàng)不符合題意;C、是中心對稱圖形,故此選項(xiàng)符合題意;D、不是中心對稱圖形,故此選項(xiàng)不符合題意;故選C.【點(diǎn)睛】本題主要考查了中心對稱圖形的識(shí)別,解題的關(guān)鍵在于能夠熟練掌握中心對稱圖形的定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)就是它的對稱中心.6、A【詳解】解:A、既是軸對稱圖形又是中心對稱圖形,此項(xiàng)符合題意;B、是中心對稱圖形,不是軸對稱圖形,此項(xiàng)不符題意;C、是軸對稱圖形,不是中心對稱圖形,此項(xiàng)不符題意;D、是軸對稱圖形,不是中心對稱圖形,此項(xiàng)不符題意;故選:A.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形,熟記中心對稱圖形的定義(在平面內(nèi),把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形與另一個(gè)圖形重合,那么這兩個(gè)圖形互為中心對稱圖形)和軸對稱圖形的定義(如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,那么這個(gè)圖形叫做軸對稱圖形)是解題關(guān)鍵.7、B【分析】由題意以及旋轉(zhuǎn)的性質(zhì)可得為等邊三角形,則BD=2,故CD=BC-BD=2.【詳解】由題意以及旋轉(zhuǎn)的性質(zhì)知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故為等邊三角形,即AB=AD=BD=2則CD=BC-BD=4-2=2故選:B.【點(diǎn)睛】本題考查了等邊三角形的判定及性質(zhì),等邊三角形的三邊都相等,三個(gè)內(nèi)角都相等,并且每一個(gè)內(nèi)角都等于,等邊三角形判定的方法有:三邊相等的三角形是等邊三角形(定義);三個(gè)內(nèi)角都相等的三角形是等邊三角形;有一個(gè)內(nèi)角是60度的等腰三角形是等邊三角形;兩個(gè)內(nèi)角為60度的三角形是等邊三角形.8、A【分析】用紅球的個(gè)數(shù)除以所有球的個(gè)數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個(gè)球,其中紅球有2個(gè),∴P(摸到紅球)=,故選:A.【點(diǎn)睛】此題主要考查概率的意義及求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.二、填空題1、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個(gè)都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球?yàn)?,白球?yàn)?,列表得:∵一共?2種情況,摸到兩個(gè)都是紅球有2種,∴P(兩個(gè)球都是紅球),故答案是.【點(diǎn)睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.2、2【分析】根據(jù)扇形的面積公式S=,代入計(jì)算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個(gè)扇形的面積為:==2.答案為:2.【點(diǎn)睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個(gè)曲邊三角形,把弧長l看成底,R看成底邊上的高即可.3、30【分析】設(shè)袋中紅球有x個(gè),根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個(gè),根據(jù)題意,得:,解并檢驗(yàn)得:x=30.所以袋中紅球有30個(gè).故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,解決本題的關(guān)鍵是用頻率的集中趨勢來估計(jì)概率,這個(gè)固定的近似值4、【分析】根據(jù)陰影部分面積等于以為直徑的2個(gè)半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點(diǎn)睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關(guān)鍵.5、【分析】抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點(diǎn)數(shù)小于5的概率.【詳解】解:∵抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點(diǎn)數(shù)小于5的概率是:.故答案為:.【點(diǎn)睛】此題主要考查了概率的求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.6、5(4,0)【分析】(1)根據(jù)點(diǎn)M在線段AB的垂直平分線上求解即可;(2)點(diǎn)P在⊙M切點(diǎn)處時(shí),最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點(diǎn)M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點(diǎn)M的縱坐標(biāo)為:,故答案為:5;(2)過點(diǎn),,作⊙M與x軸相切,則點(diǎn)M在切點(diǎn)處時(shí),最大,理由:若點(diǎn)是x軸正半軸上異于切點(diǎn)P的任意一點(diǎn),設(shè)交⊙M于點(diǎn)E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點(diǎn)P在切點(diǎn)處時(shí),∠APB最大,∵⊙M經(jīng)過點(diǎn)A(0,2)、B(0,8),∴點(diǎn)M在線段AB的垂直平分線上,即點(diǎn)M在直線y=5上,∵⊙M與x軸相切于點(diǎn)P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設(shè)AB的中點(diǎn)為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點(diǎn)P的坐標(biāo)為(4,0),故答案為:(4,0).【點(diǎn)睛】本題考查了切線的性質(zhì),線段垂直平分線的性質(zhì),矩形的判定及勾股定理,正確作出圖形是解題的關(guān)鍵.7、4或12或【分析】分三種情況討論:當(dāng)AB=BC時(shí)、當(dāng)AB=AC時(shí)、當(dāng)AC=BC時(shí),根據(jù)垂徑定理和勾股定理即可求解.【詳解】解:如圖1,當(dāng)AB=BC時(shí),BC=2,故BC2=4;如圖2,當(dāng)AB=AC=2時(shí),過A作AD⊥BC于D,連接OC,∴BD=CD,設(shè)OD=x,則在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如圖3,當(dāng)AC=BC時(shí),則C在AB的垂直平分線上,∴CD經(jīng)過圓心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,綜上,BC2為4或12或故答案為:4或12或.【點(diǎn)睛】本題考查了垂徑定理,等腰三角形的性質(zhì),勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.三、解答題1、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計(jì)麥種的發(fā)芽率,大數(shù)次實(shí)驗(yàn),當(dāng)頻率固定到一個(gè)穩(wěn)定值時(shí),可根據(jù)頻率公式=頻數(shù)÷總數(shù)計(jì)算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆粒÷50×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實(shí)驗(yàn)數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點(diǎn)睛】本題考查用頻率估計(jì)發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計(jì)發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.2、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過點(diǎn)A作AF⊥EC交EC于點(diǎn)F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:過點(diǎn)A作AF⊥EC交EC于點(diǎn)F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,∴四邊形OAFC是矩形,∵OA=OC,∴四邊形OAFC是正方形,∴,∵,∴,在Rt△AFE中,,∴AE=2AF=6.【點(diǎn)睛】本題主要考查了圓周角定理,切線的性質(zhì),直角三角形的性質(zhì),正方形的判定和性質(zhì),熟練掌握相關(guān)知識(shí)點(diǎn)是解題的關(guān)鍵.3、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質(zhì)解得,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,證明,繼而由兩直線平行,同旁內(nèi)角互補(bǔ)證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應(yīng)邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結(jié)合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設(shè)圓的半徑為R,點(diǎn)F是劣弧AD的中點(diǎn),OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點(diǎn)睛】本題考查圓的綜合題,涉及切線的判定與性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、扇形面積等知識(shí),綜合性較強(qiáng),有難度,掌握相關(guān)知識(shí)是解題關(guān)鍵.4、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計(jì)算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為R;則【點(diǎn)睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會(huì)進(jìn)行位似變換的作圖是解題的關(guān)鍵.5、(1)見解析,;(2)見解析,(3)繞點(diǎn)O順時(shí)針時(shí)針旋轉(zhuǎn)【分析】(1)根據(jù)題意得:關(guān)于原點(diǎn)的對稱點(diǎn)為,再順次連接,即可求解;(2)根據(jù)題意得:繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后的對稱點(diǎn)為,再順次連接;(3)根據(jù)題意得:繞點(diǎn)O順時(shí)針時(shí)針旋轉(zhuǎn)后可直接得到,即可求解.(1)解:根據(jù)題意得:關(guān)于原點(diǎn)的對應(yīng)點(diǎn)為,畫出圖形如下圖所示:(2)解:根據(jù)題意得:繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)后的對應(yīng)點(diǎn)為,畫出圖形如下圖所示:(3)解:根據(jù)題意得:繞點(diǎn)O順時(shí)針時(shí)針旋轉(zhuǎn)后可直接得到.【點(diǎn)睛】本題主要考查了圖形的變換——畫關(guān)于原點(diǎn)對稱,繞原點(diǎn)旋轉(zhuǎn)后圖形,得到圖形關(guān)于原點(diǎn)對稱,繞原點(diǎn)旋轉(zhuǎn)后對應(yīng)點(diǎn)的坐標(biāo)是解題的關(guān)鍵.6、(1)見解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點(diǎn)P,點(diǎn)P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進(jìn)一步計(jì)算即可求解.(1)解:如圖中,點(diǎn)P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長度為1.【點(diǎn)睛】本題考查了作圖-應(yīng)用與設(shè)計(jì),垂徑定理,勾股定理,,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.7、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點(diǎn)C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點(diǎn)C作交BE于點(diǎn)M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時(shí),BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深度解析(2026)《GBT 19203-2003復(fù)混肥料中鈣、鎂、硫含量的測定》
- 大連萬達(dá)集團(tuán)采購經(jīng)理考試題目
- 企業(yè)資產(chǎn)管理員筆試題及答案
- 塑料螺釘項(xiàng)目可行性分析報(bào)告范文
- 特殊藥物(如抗凝藥)相關(guān)上消化道出血內(nèi)鏡處理
- 深度解析(2026)GBT 18942.2-2003高聚物多孔彈性材料 壓縮應(yīng)力應(yīng)變特性的測定 第2部分 高密度材料
- 深度解析(2026)《GBT 18916.1-2021取水定額 第1部分:火力發(fā)電》
- 深度解析(2026)《GBT 18829.6-2002纖維粗度的測定》
- 華為公司招聘銷售部經(jīng)理面試題及答案
- 蒸煮設(shè)備項(xiàng)目可行性研究報(bào)告(總投資20000萬元)(84畝)
- 2024年通用直升機(jī)相關(guān)項(xiàng)目運(yùn)營指導(dǎo)方案
- 《臺(tái)式香腸烤制方法》課件
- 常用計(jì)量值控制圖系數(shù)表
- 馬克思主義經(jīng)典著作選讀智慧樹知到課后章節(jié)答案2023年下四川大學(xué)
- 慢性阻塞性肺疾病急性加重期機(jī)械通氣
- 傳染病學(xué)智慧樹知到課后章節(jié)答案2023年下溫州醫(yī)科大學(xué)
- 濕熱滅菌驗(yàn)證方案及報(bào)告
- 工業(yè)區(qū)位因素及其變化高一地理人教版(2019)必修二
- 2022年5月CATTI英語三級口譯實(shí)務(wù)真題(最全回憶版)
- 畫法幾何知到章節(jié)答案智慧樹2023年浙江大學(xué)
- 少年宮剪紙社團(tuán)活動(dòng)記錄
評論
0/150
提交評論