版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
京改版數(shù)學(xué)9年級(jí)上冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計(jì)12分)1、西周時(shí)期,丞相周公旦設(shè)置過一種通過測(cè)定日影長度來確定時(shí)間的儀器,稱為圭表.如圖是一個(gè)根據(jù)北京的地理位置設(shè)計(jì)的圭表,其中,立柱AC高為a.已知,冬至?xí)r北京的正午日光入射角∠ABC約為26.5°,則立柱根部與圭表的冬至線的距離(即BC的長)約為()A. B.a(chǎn)sin26.5° C.a(chǎn)cos26.5° D.2、以原點(diǎn)O為圓心的圓交x軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=25°,則∠OCD=(
).A.50° B.40° C.70° D.30°3、三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小完全相同.當(dāng)水面剛好淹沒小孔時(shí),大孔水面寬度為10米,孔頂離水面1.5米;當(dāng)水位下降,大孔水面寬度為14米時(shí),單個(gè)小孔的水面寬度為4米,若大孔水面寬度為20米,則單個(gè)小孔的水面寬度為()A.4米 B.5米 C.2米 D.7米4、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(
)A. B. C. D.5、如圖,將一張寬為2cm的長方形紙片沿AB折疊成如圖所示的形狀,那么折痕AB的長為(
)cmA. B. C.2 D.6、當(dāng)0x3,函數(shù)y=﹣x2+4x+5的最大值與最小值分別是()A.9,5 B.8,5 C.9,8 D.8,4二、多選題(7小題,每小題2分,共計(jì)14分)1、如圖,在中,,于點(diǎn)D,下列結(jié)論正確的是(
)A. B. C. D.2、如圖所示,AB為斜坡,D是斜坡AB上一點(diǎn),斜坡AB的坡度為i,坡角為,于點(diǎn)C,下面正確的有(
)A. B.C. D.3、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結(jié)論正確的是(
)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD4、已知:如圖,AB為⊙O的直徑,CD、CB為⊙O的切線,D、B為切點(diǎn),OC交⊙O于點(diǎn)E,AE的延長線交BC于點(diǎn)F,連接AD、BD.以下結(jié)論中正確的有()A.AD∥OC B.點(diǎn)E為△CDB的內(nèi)心 C.FC=FE D.CE?FB=AB?CF5、下列命題不正確的是(
)A.三角形的內(nèi)心到三角形三個(gè)頂點(diǎn)的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個(gè)圓一定有唯一一個(gè)外切三角形6、對(duì)于實(shí)數(shù)a,b,定義運(yùn)算“※”:,例如:4※2,因?yàn)椋?,若函?shù),則下列結(jié)論正確的是(
)A.方程的解為,;B.當(dāng)時(shí),y隨x的增大而增大;C.若關(guān)于x的方程有三個(gè)解,則;D.當(dāng)時(shí),函數(shù)的最大值為1.7、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),若△ABP與△CDP相似,則BP=(
)A.3.6B.C.D.2.4第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,在四邊形ABCD中,點(diǎn)E、F分別是AB、CD的中點(diǎn),過點(diǎn)E作AB的垂線,過點(diǎn)F作CD的垂線,兩垂線交于點(diǎn)G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為___.2、如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,直線DE是⊙O的切線,切點(diǎn)為D,交AC于E,若⊙O半徑為1,BC=4,則圖中陰影部分的面積為_____.3、兩個(gè)任意大小的正方形,都可以適當(dāng)剪開,拼成一個(gè)較大的正方形,如用兩個(gè)邊長分別為,的正方形拼成一個(gè)大正方形.圖中的斜邊的長等于________(用,的代數(shù)式表示).4、如圖,在平行四邊形中,點(diǎn)在邊上,,連接交于點(diǎn),則的面積與四邊形的面積之比為___
5、如圖,在平面直角坐標(biāo)系中,點(diǎn)A在拋物線y=x2﹣2x+2上運(yùn)動(dòng).過點(diǎn)A作AC⊥x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連接BD,則對(duì)角線BD的最小值為_____.6、如圖,點(diǎn)O是正方形ABCD的對(duì)稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點(diǎn),連接EF,已知,.(1)以點(diǎn)E,O,F(xiàn),D為頂點(diǎn)的圖形的面積為_________;(2)線段EF的最小值是_________.7、如圖,已知DC為∠ACB的平分線,DE∥BC.若AD=8,BD=10,BC=15,求EC的長=_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,∠1=∠2=∠3,試找出圖中兩對(duì)相似三角形,并說明為什么?2、如圖,直角三角形中,,為中點(diǎn),將繞點(diǎn)旋轉(zhuǎn)得到.一動(dòng)點(diǎn)從出發(fā),以每秒1的速度沿的路線勻速運(yùn)動(dòng),過點(diǎn)作直線,使.(1)當(dāng)點(diǎn)運(yùn)動(dòng)2秒時(shí),另一動(dòng)點(diǎn)也從出發(fā)沿的路線運(yùn)動(dòng),且在上以每秒1的速度勻速運(yùn)動(dòng),在上以每秒2的速度勻速運(yùn)動(dòng),過作直線使,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,直線與截四邊形所得圖形的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值.(2)當(dāng)點(diǎn)開始運(yùn)動(dòng)的同時(shí),另一動(dòng)點(diǎn)從處出發(fā)沿的路線運(yùn)動(dòng),且在上以每秒的速度勻速運(yùn)動(dòng),在上以每秒2的速度勻度運(yùn)動(dòng),是否存在這樣的,使為等腰三角形?若存在,直接寫出點(diǎn)運(yùn)動(dòng)的時(shí)間的值,若不存在請(qǐng)說明理由.3、某公司電商平臺(tái),在2021年五一長假期間,舉行了商品打折促銷活動(dòng),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),某種商品的周銷售量y(件)是關(guān)于售價(jià)x(元/件)的一次函數(shù),下表僅列出了該商品的售價(jià)x,周銷售量y,周銷售利潤W(元)的三組對(duì)應(yīng)值數(shù)據(jù).x407090y1809030W360045002100(1)求y關(guān)于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若該商品進(jìn)價(jià)a(元/件),售價(jià)x為多少時(shí),周銷售利潤W最大?并求出此時(shí)的最大利潤;(3)因疫情期間,該商品進(jìn)價(jià)提高了m(元/件)(),公司為回饋消費(fèi)者,規(guī)定該商品售價(jià)x不得超過55(元/件),且該商品在今后的銷售中,周銷售量與售價(jià)仍滿足(1)中的函數(shù)關(guān)系,若周銷售最大利潤是4050元,求m的值.4、某超市經(jīng)銷一種商品,每件成本為50元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該商品每件的銷售價(jià)為60元時(shí),每個(gè)月可銷售300件,若每件的銷售價(jià)每增加1元,則每個(gè)月的銷售量將減少10件.設(shè)該商品每件的銷售價(jià)為x元,每個(gè)月的銷售量為y件.(1)求y與x的函數(shù)表達(dá)式;(2)當(dāng)該商品每件的銷售價(jià)為多少元時(shí),每個(gè)月的銷售利潤最大?最大利潤是多少?5、某商場(chǎng)經(jīng)營某種品牌的玩具,購進(jìn)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查,在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600元,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價(jià)為x元,請(qǐng)你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場(chǎng)獲利了10000元銷售利潤,求該玩具銷售單價(jià)x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于45元,且商場(chǎng)要完成不少于480件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲利的最大利潤是多少元?6、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).-參考答案-一、單選題1、A【解析】【分析】根據(jù)題意和圖形,可以用含a的式子表示出BC的長,從而可以解答本題.【詳解】由題意可得,立柱根部與圭表的冬至線的距離為:,故選:A.【考點(diǎn)】此題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是明確題意,利用銳角三角函數(shù)解答.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點(diǎn)】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.3、B【解析】【分析】根據(jù)題意,可以畫出相應(yīng)的拋物線,然后即可得到大孔所在拋物線解析式,再求出頂點(diǎn)為A的小孔所在拋物線的解析式,將x=﹣10代入可求解.【詳解】解:如圖,建立如圖所示的平面直角坐標(biāo)系,由題意可得MN=4,EF=14,BC=10,DO=,設(shè)大孔所在拋物線解析式為y=ax2+,∵BC=10,∴點(diǎn)B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在拋物線解析式為y=-x2+,設(shè)點(diǎn)A(b,0),則設(shè)頂點(diǎn)為A的小孔所在拋物線的解析式為y=m(x﹣b)2,∵EF=14,∴點(diǎn)E的橫坐標(biāo)為-7,∴點(diǎn)E坐標(biāo)為(-7,-),
∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴頂點(diǎn)為A的小孔所在拋物線的解析式為y=-(x﹣b)2,∵大孔水面寬度為20米,∴當(dāng)x=-10時(shí),y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴單個(gè)小孔的水面寬度=|(+b)-(-+b)|=5(米),故選:B.【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.4、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個(gè)內(nèi)角,再根據(jù)等邊對(duì)等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點(diǎn)】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算,掌握?qǐng)A內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計(jì)算是解題關(guān)鍵.5、A【解析】【分析】作點(diǎn)A作,交BC于點(diǎn)D,作點(diǎn)B作,交AC于點(diǎn)E,根據(jù)長方形紙條的寬得出,繼而可證明是等邊三角形,則有,然后在直角三角形中利用銳角三角函數(shù)即可求出AB的值.【詳解】作點(diǎn)A作,交BC于點(diǎn)D,作點(diǎn)B作,交AC于點(diǎn)E,∵長方形的寬為2cm,,,.∴是等邊三角形,故選:A.【考點(diǎn)】本題主要考查等邊三角形的判定及性質(zhì),銳角三角函數(shù),掌握等邊三角形的判定及性質(zhì)和特殊角的三角函數(shù)值是解題的關(guān)鍵.6、A【解析】【分析】利用配方法把原方程化為頂點(diǎn)式,再根據(jù)二次函數(shù)的性質(zhì)即可解答.【詳解】y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴當(dāng)x=2時(shí),最大值是9,∵0≤x≤3,∴x=0時(shí),最小值是5,故選:A.【考點(diǎn)】本題考查二次函數(shù)的最值,掌握二次函數(shù)的性質(zhì)與利用配方法將一般式改為頂點(diǎn)式是解答本題的關(guān)鍵.二、多選題1、BC【解析】【分析】根據(jù)等角的余角相等,先把跟相等的角找出來,在不同直角三角形根據(jù)正弦值的定義即可解答.【詳解】在中,,,于點(diǎn)D,,,在中,,故A錯(cuò)誤;在中,,故B正確;在中,,故C正確,D錯(cuò)誤.故選:BC.【考點(diǎn)】本題考查了銳角三角形的定義,掌握正弦值的表示是解題的關(guān)鍵.2、BCD【解析】【分析】根據(jù)坡度的定義解答即可.【詳解】交于點(diǎn),交于點(diǎn),,,,,,∴BCD正確.故選:BCD.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,熟記坡度的定義是解題的關(guān)鍵.3、ABCD【解析】【分析】選項(xiàng)A:連接OE,利用切線長定理得到AD=ED,CE=CB,可得AD+BC=CD.選項(xiàng)B:OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,選項(xiàng)C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據(jù)等量代換即可得出C選項(xiàng)正確.選項(xiàng)D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項(xiàng)A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項(xiàng)B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項(xiàng)C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項(xiàng)D正確;故答案為:ABCD.【考點(diǎn)】牢記切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.4、ABD【解析】【分析】連接OD,由CD、CB為⊙O的切線,可得DC=BC,由OD=OB,可得OC為BD的垂直平分線,可證OC⊥BD,再證AD⊥BD,可判斷選項(xiàng)A正確;連接DE、BE,CD、CB為⊙O的切線,可得∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,推得∠CDE=∠DOE,∠CBE=∠BOE,由,可得∠EDB=∠EBD=∠CDE=∠CBE,可判斷選項(xiàng)B正確;用反證法假設(shè)FC=FE,可得∠FCE=∠FEC,可證△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,可判斷選項(xiàng)C不正確;先證△ABE∽△BFE,可得,再證△CEF∽△CBE,可得,推出,可判斷選項(xiàng)D正確.【詳解】解:連接OD,∵CD、CB為⊙O的切線,∴DC=BC,∵OD=OB,∴OC為BD的垂直平分線,∴OC⊥BD,∵AB為直徑,∴∠ADB=90°,∴AD⊥BD,∴AD∥OC,故選項(xiàng)A正確;連接DE、BE,∵CD、CB為⊙O的切線,∴OD⊥DC,OB⊥BC,∴∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,∵2∠ODE+∠DOE=180°,2∠OBE+∠BOE=180°,∴∠ODE+∠DOE=90°,∠OBE+∠BOE=90°,∴∠CDE=∠DOE,∠CBE=∠BOE,∵,∴∠DAE=∠DBE=∠EDB=∠EBD=∠DOE=∠BOE,∴∠EDB=∠EBD=∠CDE=∠CBE,∴點(diǎn)E為△CDB各內(nèi)角平分線的交點(diǎn),故選項(xiàng)B正確;假設(shè)FC=FE,∴∠FCE=∠FEC,∵∠CEF=∠AEO=∠EAB=∠EDB=∠EBD,∴2∠EDB=2∠EBD=2∠BCE即∠DCB=∠CDB=∠CBD,∴△CDB為等邊三角形,與已知△CDB為等腰三角形矛盾,故假設(shè)不正確,故選項(xiàng)C不正確;∵AB為直徑,∴∠AEB=90°又∵BC為切線,AB為直徑,∴∠ABF=90°,∴∠FBE+∠EBA=90°,∠EAB+∠EBA=90°,∴∠EAB=∠EBF,∠AEB=∠BEF=90°,∴△ABE∽△BFE,∴,∵∠CBE=∠CEF,∠ECF=∠BCE,∴△CEF∽△CBE,∴,∴,∴CE?FB=AB?CF,故選項(xiàng)D正確;結(jié)論中正確的有ABD.故選擇ABD.【考點(diǎn)】本題考查圓的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì),掌握?qǐng)A的切線性質(zhì),線段垂直平分線判定與性質(zhì),圓周角定理,證明三角形內(nèi)心,反證法,三角形相似判定與性質(zhì)是解題關(guān)鍵.5、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),內(nèi)心到三角形三邊的距離相等,錯(cuò)誤,該選項(xiàng)符合題意;B、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),三角形的內(nèi)心一定在三角形的內(nèi)部,錯(cuò)誤,該選項(xiàng)符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項(xiàng)不符合題意;D、經(jīng)過圓上的三點(diǎn)作圓的切線,三條切線相交,即可得到圓的一個(gè)外切三角形,所以一個(gè)圓有無數(shù)個(gè)外切三角形,錯(cuò)誤,該選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.6、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時(shí)y=2x2﹣2x,x<1時(shí),y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時(shí),y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時(shí),y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時(shí),2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時(shí),﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時(shí),y=2x2﹣2x,拋物線開口向上,對(duì)稱軸是直線x=,∴x>1時(shí),y隨x的增大而增大,∴B選項(xiàng)正確.當(dāng)x≥1時(shí),y=2x2﹣2x=2(x﹣)2﹣,∴x=1時(shí),y取最小值為y=0,當(dāng)x<1時(shí),y=﹣x2+1=0,當(dāng)x=0時(shí),y取最大值為y=1,如圖,當(dāng)0<m<1時(shí),方程(2x)※(x+1)=m有三個(gè)解,∴選項(xiàng)C錯(cuò)誤,選項(xiàng)D正確.故答案為:ABD.【考點(diǎn)】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.7、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計(jì)算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點(diǎn)】本題考查相似三角形得的性質(zhì)與應(yīng)用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.三、填空題1、【解析】【分析】延長AD交GB于點(diǎn)M,交BC的延長線于點(diǎn)H,則AHBH,由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長AD交GB于點(diǎn)M,交BC的延長線于點(diǎn)H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點(diǎn)】本題是相似三角形綜合題目,考查了線段垂直平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)等知識(shí),本題難度較大,綜合性強(qiáng),解題的關(guān)鍵是通過作輔助線綜合運(yùn)用全等三角形和相似三角形的性質(zhì).2、【解析】【分析】連接OD、OE、AD,AD交OE于F,如圖,根據(jù)切線的性質(zhì)得到∠BAC=90°,利用余弦的定義可計(jì)算出∠B=60°,則根據(jù)圓周角定理得到∠ADB=90°,∠AOD=120°,于是可計(jì)算出BD=1,AD=,接著證明△ADE為等邊三角形,求出OF=,根據(jù)扇形的面積公式,利用S陰影部分=S四邊形OAED﹣S扇形AOD=S△ADE+S△AOD﹣S扇形AOD進(jìn)行計(jì)算.【詳解】解:連接OD、OE、AD,AD交OE于F,如圖,∵AC是⊙O的切線,切點(diǎn)為A,∴AB⊥AC,∴∠BAC=90°,在Rt△ABC中,cosB===,∴∠B=60°,∴∠AOD=2∠B=120°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-∠B=90°-60°=30°,在Rt△ADB中,BD=AB=1,∴AD=BDtan60°=BD=,∵直線DE、EA都是⊙O的切線,∴EA=ED,∠DAE=90°-∠BAD=90°-30°=60°,∴△ADE為等邊三角形,而OA=OD,∴OE垂直平分AD,∴∠AFO=90°,在Rt△AOF中,∠OAF=30°,∴OF=OA=,∴S陰影部分=S四邊形OAED﹣S扇形AOD,=S△ADE+S△AOD﹣S扇形AOD,=×()2+××﹣,=.故答案為.【考點(diǎn)】本題考查圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì),掌握和運(yùn)用圓的切線,圓周角定理,扇形面積公式,銳角三角函數(shù)求角,30°角直角三角形的性質(zhì)是解題關(guān)鍵.3、【解析】【分析】根據(jù)題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據(jù)射影定理可得BC2=a?AB,由此即可解答.【詳解】根據(jù)題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點(diǎn)】本題考查射影定理的知識(shí),注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).4、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設(shè)DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設(shè)S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點(diǎn)】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關(guān)鍵是運(yùn)用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.5、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結(jié)合頂點(diǎn)到x軸的距離最近可知當(dāng)點(diǎn)A在頂點(diǎn)處時(shí)滿足條件,求得拋物線的頂點(diǎn)坐標(biāo)即可求得答案.【詳解】解:∵AC⊥x軸,∴當(dāng)點(diǎn)A為拋物線頂點(diǎn)時(shí),AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點(diǎn)坐標(biāo)為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點(diǎn)】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時(shí)的位置是解題的關(guān)鍵.6、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時(shí),EF有最小值,故答案為:.【考點(diǎn)】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.7、【解析】【分析】先由角平分線的定義及平行線的性質(zhì)求得∠EDC=∠ECD,從而EC=DE;再DE∥BC,證得△ADE∽△ABC,然后根據(jù)相似三角形的性質(zhì)列出比例式,求得DE的長,即為EC的長.【詳解】解:∵DC為∠ACB的平分線∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案為:【考點(diǎn)】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的判定及相似三角形的判定與性質(zhì),熟練掌握相關(guān)性質(zhì)與定理是解題的關(guān)鍵.四、解答題1、△AFD∽△EFB,△ABC∽△ADE;理由見解析.【解析】【分析】根據(jù)兩個(gè)三角形的兩組角對(duì)應(yīng)相等,那么這兩個(gè)三角形互為相似三角形證明即可.【詳解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考點(diǎn)】本題考查相似三角形的判定定理,熟記判定定理,本題用到了兩組角對(duì)應(yīng)相等的兩個(gè)三角形互為相似三角形.2、(1),S的最大值為;(2)存在,m的值為或或或.【解析】【分析】(1)分、和三種情況分別表示出有關(guān)線段求得兩個(gè)變量之間的函數(shù)關(guān)系即可.(2)分兩種情形:①如圖中,由題意點(diǎn)在上運(yùn)動(dòng)的時(shí)間與點(diǎn)在上運(yùn)動(dòng)的時(shí)間相等,即.當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),分別構(gòu)建方程求解即可.②如圖中,作于.首先證明,根據(jù)構(gòu)建方程即可解決問題.【詳解】解:(1)如圖中,當(dāng)時(shí),點(diǎn)與點(diǎn)都在上運(yùn)動(dòng),,,,,,,,,,.此時(shí)兩平行線截平行四邊形的面積為.如圖中,當(dāng)時(shí),點(diǎn)在上運(yùn)動(dòng),點(diǎn)仍在上運(yùn)動(dòng).則,,,,,,,而,故此時(shí)兩平行線截平行四邊形的面積為:,如圖中,當(dāng)時(shí),點(diǎn)和點(diǎn)都在上運(yùn)動(dòng).則,,,.此時(shí)兩平行線截平行四邊形的面積為.故關(guān)于的函數(shù)關(guān)系式為,當(dāng)時(shí),S隨t增大而增大,當(dāng)時(shí),S隨t增大而增大,當(dāng)時(shí),S隨t增大而減小,∴當(dāng)t=8時(shí),S最大,代入可得S=;(2)如圖中,由題意點(diǎn)在上運(yùn)動(dòng)的時(shí)間與點(diǎn)在上運(yùn)動(dòng)的時(shí)間相等,.當(dāng)時(shí),,則有,解得,當(dāng)時(shí),則有,解得,當(dāng)時(shí),,則有,解得.如圖中,作于.在Rt△CHR中,,,,,,,四邊形是平行四邊形,,四邊形是矩形,,當(dāng)時(shí),則有,解得,綜上所述,滿足條件的m的值為或或或.【考點(diǎn)】本題屬于四邊形綜合題,考查了平行四邊形的性質(zhì),多邊形的面積,等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.3、(1);(2)售價(jià)60元時(shí),周銷售利潤最大為4800元;(3)【解析】【分析】(1)①依題意設(shè)y=kx+b,解方程組即可得到結(jié)論;(2)根據(jù)題意得,再由表格數(shù)據(jù)求出,得到,根據(jù)二次函數(shù)的頂點(diǎn)式,求出最值即可;(3)根據(jù)題意得,由于對(duì)稱軸是直線,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】解:(1)設(shè),由題意有,解得,所以y關(guān)于x的函數(shù)解析式為;(2)由(1),又由表可得:,,.所以售價(jià)時(shí),周銷售利潤W最大,最大利潤為4800;(3)由題意,其對(duì)稱軸,時(shí)上述函數(shù)單調(diào)遞增,所以只有時(shí)周銷售利潤最大,..【考點(diǎn)】本題考查了二次函數(shù)在實(shí)際生活中的應(yīng)用,重點(diǎn)是掌握求最值的問題.注意:數(shù)學(xué)應(yīng)用題來源于實(shí)踐,用于實(shí)踐,在當(dāng)今社會(huì)市場(chǎng)經(jīng)濟(jì)的環(huán)境下,應(yīng)掌握一些有關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 解釋培訓(xùn)制度
- 駕校培訓(xùn)質(zhì)量通報(bào)制度
- 寵物店帶薪培訓(xùn)制度
- 影樓員工培訓(xùn)制度
- 景區(qū)營銷培訓(xùn)團(tuán)隊(duì)制度
- 干部包保培訓(xùn)制度
- 建立培訓(xùn)訓(xùn)后述學(xué)制度
- 國外知識(shí)產(chǎn)權(quán)培訓(xùn)制度
- 中醫(yī)師在職教育培訓(xùn)制度
- pa員工培訓(xùn)制度
- 離婚協(xié)議標(biāo)準(zhǔn)版(有兩小孩)
- 浙江省臺(tái)州市路橋區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期1月期末考試語文試題(含答案)
- 假體隆胸后查房課件
- 2023年互聯(lián)網(wǎng)新興設(shè)計(jì)人才白皮書
- DB52-T 785-2023 長順綠殼蛋雞
- c語言知識(shí)點(diǎn)思維導(dǎo)圖
- 關(guān)于地方儲(chǔ)備糧輪換業(yè)務(wù)會(huì)計(jì)核算處理辦法的探討
- GB/T 29319-2012光伏發(fā)電系統(tǒng)接入配電網(wǎng)技術(shù)規(guī)定
- GB/T 1773-2008片狀銀粉
- GB/T 12007.4-1989環(huán)氧樹脂粘度測(cè)定方法
- (完整版)北京全套安全資料表格
評(píng)論
0/150
提交評(píng)論