基礎(chǔ)強(qiáng)化滬科版9年級下冊期末測試卷附參考答案詳解【綜合題】_第1頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末測試卷附參考答案詳解【綜合題】_第2頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末測試卷附參考答案詳解【綜合題】_第3頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末測試卷附參考答案詳解【綜合題】_第4頁
基礎(chǔ)強(qiáng)化滬科版9年級下冊期末測試卷附參考答案詳解【綜合題】_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形2、如圖是由幾個小立方體所搭成的幾何體從上面看到的平面圖形,小正方形中的數(shù)字表示在該位置小立方體的個數(shù),則這個幾何體從正面看到的平面圖形為()A. B. C. D.3、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.4、同時拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.5、已知菱形ABCD的對角線交于原點O,點A的坐標(biāo)為,點B的坐標(biāo)為,則點D的坐標(biāo)是()A. B. C. D.6、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7、在平面直角坐標(biāo)系中,已知點與點關(guān)于原點對稱,則的值為()A.4 B.-4 C.-2 D.28、如圖,幾何體的左視圖是()A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.2、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.3、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.4、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.5、過年時包了100個餃子,其中有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是_____.6、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.7、在一個暗箱里放入除顏色外其它都相同的1個紅球和11個黃球,攪拌均勻后隨機(jī)任取一球,取到紅球的概率是_____.三、解答題(7小題,每小題0分,共計0分)1、如圖1,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點,過點A作軸,做直線AC平行x軸,點D是二次函數(shù)的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(biāo)(用含b的代數(shù)式表示)(2)求的最大值及取得最大值時的二次函數(shù)表達(dá)式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關(guān)于PM的對稱點N,①連接AN,求AN的最小值.②當(dāng)點N落在拋物線的對稱軸上,求直線MN的函數(shù)表達(dá)式.2、已知線段AB,用平移、旋轉(zhuǎn)、軸對稱畫出一個以AB為一邊,一個內(nèi)角是30°的菱形.(不寫畫法,保留作圖痕跡).3、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數(shù).()若,,求的長.4、如圖1,在⊙O中,AC=BD,且AC⊥BD,垂足為點E.(1)求∠ABD的度數(shù);(2)圖2,連接OA,當(dāng)OA=2,∠OAB=15°,求BE的長度;(3)在(2)的條件下,求的長.5、如圖,在6×6的方格紙中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,A,B兩點均在格點上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點C在格點上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點均在格點上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點C在格點上.6、對于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關(guān)聯(lián)點”.已知點,,,.(1)直線l經(jīng)過點A,的半徑為2,在點A,C,D中,直線l和的“關(guān)聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關(guān)聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關(guān)聯(lián)點”在直線上,請直接寫出b的取值范圍.7、如圖,在⊙O中,弦AC與弦BD交于點P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.-參考答案-一、單選題1、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關(guān)鍵.2、B【分析】幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右的每列的小立方體的個數(shù)為1,2,1,從上往下的每層的小立方體的個數(shù)為1,3,即可求解【詳解】解:幾何體從上面看到的每個數(shù)字是該位置小立方體的個數(shù),可得從正面看共有3列,2層,從左往右每列的小立方體的個數(shù)為1,2,1,從上往下每層的小立方體的個數(shù)為1,3,所以這個幾何體從正面看到的平面圖形為故選:B【點睛】本題主要考查了幾何體的三視圖,熟練掌握三視圖是觀測者從三個不同位置觀察同一個幾何體,畫出的平面圖形;(1)從正面看:從物體前面向后面正投影得到的投影圖,它反映了空間幾何體的高度和長度;(2)從側(cè)面看:從物體左面向右面正投影得到的投影圖,它反映了空間幾何體的高度和寬度;(3)從上面看:從物體上面向下面正投影得到的投影圖,它反應(yīng)了空間幾何體的長度和寬度是解題的關(guān)鍵.3、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進(jìn)而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.4、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.5、A【分析】根據(jù)菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,則點與點關(guān)于原點中心對稱,根據(jù)中心對稱的點的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對稱圖形,菱形ABCD的對角線交于原點O,∴與點關(guān)于原點中心對稱,點B的坐標(biāo)為,點D的坐標(biāo)是故選A【點睛】本題考查了菱形的性質(zhì),求關(guān)于原點中心對稱的點的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.6、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點旋轉(zhuǎn)后能與自身重合.7、C【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點:兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反即可得到答案.【詳解】解:點與點關(guān)于原點對稱,,,.故選:C.【點睛】此題主要考查了原點對稱點的坐標(biāo)特點,解題的關(guān)鍵是掌握點的變化規(guī)律.8、D【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】根據(jù)左視圖的定義可知,這個幾何體的左視圖是選項D,故選:D.【點睛】本題考查簡單組合體的三視圖,解題的關(guān)鍵是理解三視圖的定義.二、填空題1、【分析】根據(jù)題中點的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當(dāng)時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.2、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關(guān)鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.3、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.4、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據(jù)三角形的三邊關(guān)系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,關(guān)鍵是證點H是以AB為直徑的圓上一點.5、【分析】直接利用概率公式進(jìn)行計算即可.【詳解】解:過年時包了100個餃子,有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是故答案為:【點睛】本題考查的是簡單隨機(jī)事件的概率,熟練的利用概率公式進(jìn)行計算是解本題的關(guān)鍵;概率的含義:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.6、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.7、【分析】由題意可知,共有12個球,取到每個球的機(jī)會均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點睛】本題考查簡單事件的概率,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.三、解答題1、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設(shè)w=,根據(jù)OD=2b,BD=4-2b,構(gòu)造二次函數(shù)求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當(dāng)P、N、A同側(cè)且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側(cè)和右側(cè),兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標(biāo)為2b.(2)設(shè)w=,∵點D的橫坐標(biāo)為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當(dāng)b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關(guān)于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當(dāng)P、N、A同側(cè)且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當(dāng)點N落在拋物線的對稱軸上,且M在對稱軸的左側(cè),如圖所示,設(shè)對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設(shè)CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設(shè)直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當(dāng)點N落在拋物線的對稱軸上,且M在對稱軸的右側(cè),如圖所示,設(shè)對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設(shè)CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設(shè)直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)的最值,圓的基本性質(zhì),待定系數(shù)法確定一次函數(shù)的解析式,軸對稱的性質(zhì),勾股定理,熟練掌握圓的性質(zhì),拋物線的性質(zhì),靈活運用對稱的思想和勾股定理是解題的關(guān)鍵.2、見解析【分析】把線段AB繞點A逆時針旋轉(zhuǎn)30°得到線段AD,作直線BD,以直線BD為對稱軸,分別作AB、AD的軸對稱圖形,即可得到所求的菱形ABCD.【詳解】解:如圖所示:菱形ABCD即為所求.【點睛】本題主要考查了菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、軸對稱的性質(zhì)等知識點,理解菱形的性質(zhì)是解答本題的關(guān)鍵.3、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解;(2)利用垂徑定理可以得到,從而得到結(jié)論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關(guān)鍵.4、(1);(2);(3)【分析】(1)如圖,過作垂足分別為連接證明四邊形為正方形,可得證明可得答案;(2)先求解再結(jié)合(1)的結(jié)論可得答案;(3)如圖,連接先求解再證明再求解可得再利用弧長公式計算即可.【詳解】解:(1)如圖,過作垂足分別為連接四邊形為矩形,由勾股定理可得:而四邊形為正方形,而(2)如圖,過作垂足分別為由(1)得:四邊形為正方形,OA=2,∠OAB=15°,(3)如圖,連接【點睛】本題考查的是勾股定理的應(yīng)用,等腰三角形的判定與性質(zhì),矩形,正方形的判定與性質(zhì),垂徑定理的應(yīng)用,弧長的計算,掌握以上知識并靈活運用是解本題的關(guān)鍵.5、(1)見解析;(2)見解析;(3)見解析【分析】(1)因為AB=5,作腰為5的等腰三角形即可(答案不唯一);(2)作邊長為2,高為4的平行四邊形即可;(3)根據(jù)(1)的結(jié)論,作BG邊的中線,即可得解.【詳解】解:(1)如圖①中,△ABC即為所求作(答案不唯一);(2)如圖②中,平行四邊形ABCD即為所求作;(3)如圖③中,△ABC即為所求作(答案不唯一);∵AB=AG,BC=CG,∴AC⊥BG,∵△ABG的面積為,∴△ABC的面積為5,且∠ACB=90°.【點睛】本題考查作圖-應(yīng)用與設(shè)計,等腰三角形的判定和性質(zhì),勾股定理及其逆定理等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論