版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
AIandExchangeRatePredictability
AminIzadyar
ImperialCollegeBusinessSchool,ImperialCollegeLondon
Email:a.izadyar23@imperial.ac.uk
July3,2025
Abstract
Irevisittheexchangeratedisconnectpuzzle,firstdocumentedby
MeeseandRogoff
(
1983
),usinggenerativeartificialintelligence(AI)toforecastcurrencyreturnsbasedoneconomicfundamentals.UsingChatGPTandDeepSeek,Ianalyzeacomprehensivedatasetofeconomicdatareleasesformajorcurrencypairsandmeasurethefunda-mentalstrengthofeachcurrency.TheseAI-poweredfundamentalsexhibitsignificantcross-sectionalpredictivepower.AsimpletradingstrategythatgoeslongcurrencieswithstrongfundamentalsandshortcurrencieswithweakfundamentalsgeneratesaSharperatioexceeding0.7perannum.Theexcessreturnsofthisstrategyremainsignificantaftercontrollingfortraditionalcurrencyfactors.Tomitigateconcernsoflook-aheadbias,IrunmultipleexercisestoensurethatpredictabilitystemsfromAIreasoningratherthanmemorization.Finally,Iexplorethepotentialsourcesofpre-dictabilityandfindevidencethattheTaylorruleframework,generallyusedbycentralbankstosetinterestrates,isakeymechanismconnectingexchangeratestoeconomicfundamentals.
Keywords:ForeignExchange,ReturnPredictability,LargeLanguageModels,ChatGPT,ArtificialIntelligence
JELClassification:C53,F31,F37,G12,G15.
1
1Introduction
Theabilityofeconomicfundamentalstoforecastexchangeratesremainselusive,sincemod-elsbasedonfundamentalsareoftenoutperformedbyasimplerandomwalk,aphenomenonknownasthe“exchangeratedisconnect”puzzle(e.g.,
MeeseandRogoff
,
1983
).Althoughtherecentliteraturehasidentifiedafeweconomicvariablesthatappeartohavepredictivepower,theanswertothisempiricalpuzzleremainsunresolved(e.g.,
Mark
,
1995
;
Engeland
West
,
2005
;
Rossi
,
2013
).
Againstthisbackdrop,theemergenceofartificialintelligence(AI)offersnewopportunitiestore-examinethispuzzle.AI’srecentadvancementshaveenabledittosolveproblemsonceconsideredtoocomplexordata-intensivefortraditionalmethods.Motivatedbythesedevel-opments,IleverageAI’sreasoningpowerandproficiencyinhandlinglargedatasetstostudyacomprehensivedatasetofeconomicdatareleases,coveringover500indicatorsfrom1996to2024formajoreconomies.Thisstudyaimstofindalinkbetweenexchangeratesandeco-nomicfundamentals,thusenhancingourunderstandingofpricediscoveryinthelargestanddeepestfinancialmarketintheworld.Topreviewmyresults,IfindevidencethatAI-derivedfundamentalscanpredictfutureexchangeratereturnsandthemostimportantpredictorsareInflationdata,Employmentdata,andBroadeconomicactivityindicators.
Usinglargelanguagemodels(LLMs)likeGPT-4oandDeepSeek-V3,Ianalyzealargedatasetcomprisingrealizedvalues,previousfigures,andconsensusforecastsofkeyeconomicdatareleases,suchasGDPreports,employmentstatistics,inflationindices,andcentralbankdecisions.IinteractwiththeAImodelusingastructuredpromptandaskittogenerateaconciseanalysisandadirectionalsignalindicatingwhetherthedatareleaseimpliesthecurrencywouldSTRENGTHEN,WEAKEN,orhasanINSIGNIFICANTORUNCERTAINimpact.Notably,theinputprovidedtothemodelincludesonlytherealized,previous,andforecastvalues,alongwiththenameofthecurrencyassociatedwiththedatarelease,exclud-inganyinformationaboutthetimeordateoftherelease.UsingAI’soutput,Ithenconstructasimplemeasure,calledtheAIFXindex,thatcapturesthenetfundamentalstrengthofeachcurrency.Specifically,foreachcurrency,theAIFXindexisdefinedasthedifferencebetweenthenumberofpositive(directionalsignalas“STRENGTHEN”)andnegative(“WEAKEN”)
2
signals,dividedbythetotalnumberofsignals,overagivenlookbackwindow.
TheAIFXindexexhibitssignificantcross-sectionalpredictivepower.Asimpletradingstrat-egy,calledtheAIFXstrategy,thatgoeslongcurrencieswithastrongAIFXindexandshortcurrencieswithaweakAIFXindexproducesanannualizedSharperatiolargerthan0.7.Moreover,aftercontrollingfortraditionalcurrencyfactorslikedollar,dollarcarry,carry,momentum,andvalue,Iuncoverastatisticallysignificantalphathataccountsfor74%oftheAIFXstrategy’saveragereturn.Ifurthervalidatetheresultthroughapanelregressionexercise,showingthattheAIFXindexeffectivelypredictsnextmonthexchangeratereturns.Takentogether,thesefindingssuggestthatAIcanhelpuncoverpreviouslyunderexploredsourcesofreturnpredictabilityintheFXmarket,thussheddinglightontheroleofeconomicfundamentals,asadvocatedbythetheoreticalliterature.
Iconductmultiplerobustnesscheckstoensurethereliabilityofthebaselineresults.First,whilethemainanalysisusesGPT-4otointerpretdatareleases,IreplicatetheentireexerciseusingDeepSeekV3totestthesensitivityofthecorefindingstothechoiceofAImodel.Theresultsremainconsistent,withbothmodelsexhibitingverysimilarperformance.Second,Iconstructanalternativemeasure,theWeightedAIFXindex,whichassignsaweighttoeachdirectionalsignalbasedonitsestimatedlevelofimportance.Iusethisweightedindexasthesignalinacross-sectionaltradingstrategyandfindthatthecoreresultsremainrobust.Third,Ialsoimplementatime-seriestradingstrategyasanalternativetothecross-sectionalstrategyusedinthebaselinespecification.Thetime-seriesstrategyalsogenerateseconomi-callymeaningfulSharperatios,anditsperformanceremainssignificantaftercontrollingforbenchmarkcurrencyfactors.
AmajorconcernwhenusingLLMsforpredictiontasksislook-aheadbias,whichoccurswhenamodelistrainedusinginformationnotavailableatthetimeoftheprediction.Asaresult,themodel’sperformancemaylookbetterthanitwouldbeinreal-time.Tomitigatethisconcern,Iimplementfourdifferentexercises.Inthefirstone,IinvestigatewhethertheAImodelmayimplicitly“remember”thetimingofadatarelease.Specifically,IusethesamedatathatwasfedtotheAImodeltogeneratethedirectionalsignals,butthistimeIaskittoindicatetheyear(nottheexactdate)whenthedatawasreleased.IftheAImodelcanrecallthetimingoftherelease,weshouldexpectittocorrectlyidentifythereleaseyear
3
inahighproportionofcases.However,thedistributionofyearsguessedbytheAImodeldiffersmarkedlyfromthetruedistributionofdatareleasesinthedataset.Ishowthatonly5.6%ofthemodel’sguessesarecorrectonaveragewithineachyear.Inthesecondexercise,Iexploitthefactthattheknowledgecut-offdateforGPT-4oisOctober2023,whileforGPT-3.5itisSeptember2021.Thistwo-yeargapprovidesanopportunitytoexaminewhethertherelativeperformanceofthetwomodelsdifferssignificantly.Specifically,Icomparetheirperformanceduringtheperiodfrom1996to2021,coveredbybothmodels’trainingsets,totheperiodfrom2021to2023,whichonlyGPT-4owastrainedon.Iflook-aheadbiaswerepresent,wewouldexpectasharpdeclineintherelativeperformanceofGPT-3.5afteritstrainingperiodends,comparedtoGPT-4o.Totestthis,Iconductadifference-in-differencesanalysisandfindthattherelativeperformanceofthetwomodelsdoesnotdiffersignificantlyacrossthetwoperiods.Inthethirdexercise,ItestforthepossibilitythattheAImodelmayhaveamemoryoftheoverallrelationshipbetweenexchangeratereturnsandcertainmacro-variables.Forexample,ifthemodelwastrainedduringaperiodwheninflationandcurrencyreturnswerepositivelycorrelated,itmightpredicthigherexchangeratesinresponsetoris-inginflation,basedonmemoryandnotreasoning.Therefore,IinvestigatewhethertheAImodelhasamemoryoftherealizedcorrelationofmacrovariableswithnextmonthcurrencyreturnsoverthesampleperiod,butfindnoevidenceindicatingso.Inthefourthexercise,IconstructaportfoliobasedonwhattheAImodelcanrememberaboutmonthlycurrencyreturnsduringthesampleperiod,referredtoasthepurehindsightportfolio,anduseitasacontrolfactor.IfindthatthereturnoftheAIFXstrategyisorthogonaltothereturnofthepurehindsightportfolio.Overall,thesefindingscollectivelysuggestthattheAImodel’sperformanceisunlikelytobedrivenbylook-aheadbias,andshouldreflectgenuinereasoningbasedontheinformationavailableatthetimeofprediction.
AfterestablishingthepredictivepoweroftheAI-derivedvariables,Iinvestigatetheunder-lyingsourcesofthispredictability.Thisstepiscrucialfromaneconomicstandpoint,asitshedslightonthepossiblemechanismsthroughwhichfundamentalsinfluenceexchangeratemovements.First,IfindthatInflationdata,Employmentdata,andBroadeconomicactivityindicatorsarethemostimportantcategoriesforforecastingexchangerates.Thesevariablesarecloselylinkedtothemonetarypolicyframeworkproposedby
Taylor
(
1993
),
4
suggestingthatcentralbanks,policyresponsestoeconomicconditionsplayapivotalroleinexchangeratedetermination.Thisinterpretationissupportedbypriorempiricalstud-iessuchas
ClaridaandWaldman
(
2007
),
MolodtsovaandPapell
(
2009
),and
Engeland
Wu
(
2024
),whichdocumentthepredictivepowerofTaylor-rulefundamentalsforexchangerates.Second,Ifindthatthepredictivesignalislargelydrivenbypositivenews(newsim-plyingcurrencyappreciation)ratherthannegativenews(implyingdepreciation).Furtheranalysisrevealsthatnegativenewstendstotriggerastrongerimmediatemarketreactionthanpositivenews,consistentwiththefindingsof
Andersenetal.
(
2003
).Asaresult,neg-ativenewsmayleavelessroomfordelayedexchangerateadjustments,therebyreducingitspredictivecontentatlongerhorizons.Aplausibleinterpretationisthatthisasymmetryinmarketreactionispartlydrivenbythewaycentralbanksimplementmonetarypolicy.Inparticular,severalstudieshavedocumentedthatmonetaryauthoritiestendtorespondmoreaggressivelytonegativeoutputgapsthantopositiveones,leadingtoageneralbiastowardlowerinterestrates(
Juanetal.
,
2004
;
BrüggemannandRiedel
,
2011
;
Hofmannand
Bogdanova
,
2012
;
Komlan
,
2013
).Thepoliticaleconomyofmonetarypolicyalsoreinforcesthisasymmetrictendency.Ratehikescanbepoliticallyunpopularastheymayslowtheeconomyorincreaseborrowingcosts.Thisasymmetricpolicystancecaninfluenceinvestors,expectations,promptingstrongerimmediatereactiontonegativenewsandcontributingtotheasymmetricpredictivepowerdocumentedinthisstudy.Takentogether,theempiricalfindingspointtotheimportanceoftheTaylorruleandmonetarypolicyinexplainingex-changeratemovements.Nonetheless,alternativeexplanationscannotbedefinitivelyruledout.
Thisresearchcontributestotwostrandsofliterature.Thefirstinvolvesthewell-known“ex-changeratedisconnect”puzzle,firstobservedby
MeeseandRogoff
(
1983
).Theirfindings,seenasshockingatthetime,promptedalargeliteraturethatre-examinedtherobustnessoftheresults(
Mark
,
1995
;
Kilian
,
1999
;
Cheungetal.
,
2005
;
MolodtsovaandPapell
,
2009
).However,theearlyempiricalstudieswereinconclusiveinaddressingthepuzzle.Anotablecontributioninthiscontextis
EngelandWest
(
2005
),whoofferapotentialresolution.Theydemonstrateanalyticallythatexchangeratescanbeconsistentwithpresentvalueassetpricingmodelsandfollowaprocessarbitrarilyclosetoarandomwalkifcertainconditions
5
aremet.Followingthis,
Engeletal.
(
2007
)presentadefenseofexchangeratemodelsbyarguingthatarandomwalkmodelisatoughbenchmarktobeatandproposealternativemethodsforevaluatingtheperformanceofexchangeratemodels.Inaddition,recentempiri-calstudiessuggestaconnectionbetweencurrencyreturnsandcountries’externalimbalances(
GourinchasandRey
,
2007
;
DellaCorteetal.
,
2012
,
2016
),sovereignrisk(
Augustinetal.
,
2020
;
DellaCorteetal.
,
2022
,
2023
),theoutputgap(
Colacitoetal.
,
2020
),macroeconomicuncertainty(
BergandMark
,
2018
;
DellaCorteandKrecetovs
,
2024
),andunemployment(
Nucera
,
2017
).Notably,thepatternofpredictabilitydocumentedinthispaperisconsistentwiththefindingsof
DahlquistandHasseltoft
(
2020
),whoexaminehowpasttrendsinkeymacroeconomicindicators,referredtoaseconomicmomentum,canpredictcurrencyreturns.ThispaperadvancestheexistingliteraturebyusinganovelAI-poweredmethodologytoan-alyzeanexpandedsetofeconomicindicators.Thisinnovativeapproachhelpsuncovernewpredictabilitypatternsandprovidesnewinsightsintoexchangeratemovements.
Second,thisprojectaddstothebodyofliteratureonnovelresearchmethodsinfinancialeconomicsthatleveragegenerativeAI.Forexample,
EisfeldtandSchubert
(
2024
)conductacomprehensivesurveyofhowthisemergingtechnologycandecreasethetimeandcostsasso-ciatedwithtraditionalresearchdesignsinfinancewhileenablingnovelanalyticalapproaches.Emergingapplicationsincludegeneratingdataembeddings(
Gabaixetal.
,
2024
;
Kimetal.
,
2024
),textclassification(
Changetal.
,
2024
;
Krockenbergeretal.
,
2024
),retrieval-augmentedgeneration(
Bartiketal.
,
2024
;
ChenandWang
,
2024
),simulatingagentbehavior(
Horton
,
2023
;
Fedyketal.
,
2024
;
Hewittetal.
,
2024
),andhypothesisgeneration(
Sietal.
,
2024
;
LudwigandMullainathan
,
2024
).Specifically,thepromptingtechniqueemployedinthisstudyismostsimilartotheapproachesusedinthefollowingpapers.
Bybee
(
2023
)usesAItogenerateeconomicexpectationsfromhistoricalnewsdataspanning120years.Inaddi-tion,
Lopez-LiraandTang
(
2024
)and
Chenetal.
(
2024
)exploretheabilityofgenerativeAI,specificallyChatGPT,topredictstockpricemovementsbasedonsentimentsextractedfrombusinessnewsheadlines.Incontrasttothesepapers,whichfocusonsentimentextractionfromtextualdata,thisstudydoesnotaimtoextractsignalsfromtext.Instead,itreliesonstructured,numericaldata,andtheAImodelispromptedtogenerateanalysisbasedonthenumericalvaluesofeconomicdatareleases.Overall,thispapercontributestothe
6
existingliteraturebydemonstratingAI’scapabilitytoanalyzelargevolumesofstructureddatainthecontextofcurrencymarkets.Inaddition,itintroducesnewtechniquestoaddresslook-aheadbias.
Theremainderofthepaperisorganizedasfollows;
Section2
presentsthedata;
Section3
outlinestheconstructionoftheAI-poweredvariables;
Section4
evaluatesthepredictivepowerofthesevariables;
Section5
investigatestheissueoflook-aheadbias;
Section6
ex-plorestheunderlyingmechanismsdrivingthepredictability;and
Section7
concludes.Aseparate
InternetAppendix
providesadditionalresultsnotincludedinthemainbodyofthispaper.
2Data
IfocusonG-10currenciesthatincludetheUnitedStatesdollar(USD),Euro(EUR),Japaneseyen(JPY),Britishpoundsterling(GBP),Swissfranc(CHF),Canadiandollar(CAD),Australiandollar(AUD),NewZealanddollar(NZD),Swedishkrona(SEK),andNorwegiankrone(NOK).Ilimitmyfocustothesecurrenciesbecauseofthelonghistoryofeconomicdatareleasesavailable.Tomeasuretheeconomicfundamentalsofeachcurrency,IhavecollectedtheeconomiccalendardatafromI.Theeconomiccalendaraggregateskeyeconomicdatareleases,suchasGDPreports,employmentstatistics,infla-tionreadings,centralbankdecisions,andothereconomicindicators(544uniqueindicators),acrossmultiplecountries.Itprovides,foreachdatarelease,therealizedvalue,thepreviousfigure,andtheconsensusforecast.ThedatasetspansfromJanuary1996toOctober2024andcomprisesatotalof174,820datapoints.
Table1
displaysthenumberofobservationscollectedforeachcurrency.Inaddition,Ihavecollectedend-of-day(Londontime)exchangeratesandone-monthforwardratesfromBloomberg.Notably,therearenineexchangeratesinthecross-section,andallratesaredefinedastheamountofU.S.dollars(USD)requiredtopurchaseoneunitofforeigncurrency(FCU).
Table2
reportssummarystatisticsforexchangeratereturns.
Table1
and
Table2
abouthere
7
3AnalysingDataReleases
3.1AIasafinancialAnalyst
Foreachdatareleaseintheeconomiccalendardata,Ifeedstructuredprompts,asin
Prompt1
,toGPT-4ousingAPIs.Thepromptcontainsthetitle,realizedvalue,previousfigure,andtheconsensusforecastofthedatareleaseandinstructstheAImodeltogenerateaconciseanalysisandadirectionalsignalindicatingwhetherthedatareleaseimpliesthecurrencywouldSTRENGTHEN,WEAKEN,orhasanINSIGNIFICANTORUNCERTAINimpact.In
Prompt1
,{currency}willcorrespondtothecurrencyassociatedwiththedatarelease.Notably,Iexcludeanyinformationaboutthetimeordateoftherelease.
Prompt:Forgetallpreviousinstructions.Youareafinancialanalyst.Youwillbegivenanewsheadline.Pleaseanalyzethenews’seffecton{currency}andprovideabriefresponse.Thenindicatewhetherthisheadlineimplies{currency}willSTRENGTHEN,WEAKEN,orhaveanINSIGNIFICANTORUNCERTAINeffect.Generatetheoutput
inthisformat:{(ANALYSIS:shortanalysisdiscussingthechannel),(DIRECTION:oneofSTRENGTHEN,WEAKEN,INSIGNIFICANTORUNCERTAIN)}
Prompt1
Asillustratedin
Example1
,
Example2
,and
Example3
,theoutputexplainsthemechanismofhowthereleasecouldaffecttheassociatedcurrencyandindicatesthepotentialdirectionofchange.
?Currency:AUD
?Input:Newsheadline:TradeBalance(monthly),Actual:4.502B,Forecast:6.100B,Previous:7.180B
?Output:Analysis:Thetradebalancefigurecameinlowerthanboththeforecastandthepreviousmonth,indicatingasmallerthanexpectedsurplus.Thiscouldsuggestthatexportshavedecreasedorimportshaveincreasedmorethananticipated,potentiallysignalingweakereconomicactivity.AlowertradebalancecannegativelyimpactthecurrencyasitimpliesthatfewerAustraliandollarsaredemandedininternationalmarketstopurchaseAustraliangoodsandservices.,Direction:WEAKEN.
Example1
8
?Currency:CAD
?Input:Newsheadline:GDP(MoM),Actual:0,Forecast:0.001,Previous:0.006
?Output:Analysis:TheCanadianGDPmonth-on-monthgrowthrateisrecordedat0%,whichisbelowtheforecastof0.1%andsignificantlylowerthantheprevi-ousmonth’s0.6%.ThisstagnationsignalsaslowdownineconomicgrowthandmaydampeninvestorsentimenttowardstheCanadiandollar.AsGDPisakeyindicatorofeconomichealth,alowerthanexpectedperformancecanleadtoexpectationsofamoreaccommodativemonetarypolicyfromtheBankofCanada,potentiallyputtingdownwardpressureontheCAD.,Direction:WEAKEN.
Example2
?Currency:GBP
?Input:Newsheadline:CPI(MoM),Actual:0.004,Forecast:0.003,Previous:0.002
?Output:Analysis:TheConsumerPriceIndex(CPI)measuresthechangeinthepricelevelofabasketofgoodsandservices.Ahigher-than-expectedCPIindicatesincreasedinflationarypressures.TheactualCPIof0.004surpassesboththeforecastof0.003andthepreviousvalueof0.002.Thissuggestsstrongerinflationarytrends,potentiallyleadingtoexpectationsoftightermonetarypolicybytheBankofEngland.Higherinterestratesgenerallyleadtocurrencyappreciationastheyattractforeigninvestmentseekinghigherreturns.,Direction:STRENGTHEN.
Example3
Toclarifytheterminology,throughoutthispaper,IrefertodatareleaseswiththedirectionlabeledasSTRENGTHENintheoutputaspositivenews,thoselabeledasWEAKENasnegativenews,andthoselabeledasINSIGNIFICANTORUNCERTAINasneutralnews.
Table1
presentsadetailedbreakdownofthecountandpercentageofpositive,negative,andneutralnewsforeachcurrencyduringthesampleperiod,providinginsightsintothedistributionofoutputsfromtheAImodel.
3.2VariableConstruction
IfollowasimpleandintuitiveapproachtoconstructthreeAI-poweredvariables.Supposeweareattimetandletτdenotethelookbackperiod.Therefore,thetimeintervalL=(t-τ,t]wouldbethelookbackwindowattimet.Basedonthis,Iconstructthefollowingvariables
9
forcurrencyc:
AIFXc;t;τ=Strengthc;t;τ-Weaknessc;t;τ(3)
TheStrengthratiocapturestheproportionofpositivenews,whiletheWeaknessratiomea-surestheproportionofnegativenews.TheAIFXindexisdefinedasthenetbalancebetweenpositiveandnegativenews,providingasinglecompositemetricofimpliedcurrencystrengthderivedfromAI-classifieddata.
4PerformanceEvaluation
Inthissection,IanalyzethepredictivepoweroftheAI-derivedvariables.Ibeginbycon-structingcross-sectionaltradingstrategiesthatusetheAIFXindexasthesignal,evaluatedacrossarangeoflookbackperiods.Theperformanceofthesestrategiesisthenassessedrelativetocommoncurrencyfactors.ToformallytestthestatisticalsignificanceoftheAIFXindexinpredictingfuturereturns,Iestimatepanelregressions.Toensurerobustness,theentireanalysisisreplicatedusingDeepSeek-V3,aleadingalternativetothebaselinemodelGPT-4o.Next,IintroduceanalternativespecificationoftheAI-poweredvariablesbyweightingeachdatareleaseaccordingtoitsestimatedeconomicimportance.Finally,Iim-plementatime-seriesstrategybasedonthesamesignalandfurtherdecomposethepredictivecomponenttoisolatetheroleofU.S.dollarfundamentals.
4.1Cross-sectionalTradingStrategy
IassessthepredictivepoweroftheAIFXindex(asdefinedin
Equation(3)
),usingstylizedcross-sectionaltradingstrategies.Notably,toevaluatethesensitivityofperformancetothelengthoflookbackwindow,Iconsiderlookbackperiodsof1to60months.Specifically,foreachchoiceoflookbackperiod,currenciesaresortedbytheirAIFXindexattheendofeachmonthandItakelongpositionsinthetoptwocurrencieswiththehighestAIFXindexandshortpositionsinthebottomtwowiththelowest.Irefertothisstrategyasthe
10
AIFXstrategy.
Figure1
presentstheannualizedSharperatiosofthestrategyacrossdifferentlookbackperiods.
Figure1
abouthere
TheAIFXstrategyconsistentlyyieldspositiveSharperatiosacrossalllookbackperiods,witheconomicallysignificantperformanceinmostcases.Predictivepowerappearsparticularlystrongforlookbackperiodsof36to60months.Additionally,
Table3
reportstheperformancestatisticsoftheAIFXstrategy,includingthemean,standarddeviation,skewness,excesskurtosisandfirst-orderautocorrelationofreturns.
Figure2
illustratesthedollarvalueofaninitial$1investmentintheAIFXstrategy
1
.Avisualinspectionofthefigureindicatesageneralupwardtrendinperformance,withgainsdistributedrelativelyevenlythroughoutthesampleperiod.
Figure3
showstheportfoliocompositionovertime.Thestrategyexhibitsmoderateturnover,implyingthattransactioncostsareunlikelytosignificantlyerodereturns.
Table3
,
Figure2
and
Figure3
abouthere
Tofurtherexaminetheperformance,Iruncontemporaneousregressionsbasedon:
RXt;τ=ατ+β1;τDollart+β2;τDollarCarryt+β3;τCarryt+
β4;τMomentumt+β5;τValuet+∈t;τ(4)
whereRXt;τdenotesthemonthlyexcessreturnoftheAIFXstrategywithlookbackperiodτ;Dollarisalong-onlyportfoliothattakesequal-weightedlongpositionsinallcurrencies;DollarCarryisadirectionalstrategythatgoeslong(short)allcurrencieswhentheaverageforwarddiscountispositive(negative);Carry,Momentum,andValuearecross-sectionalstrategiesthatrankcurrenciesbytheirforwarddiscount,previousmonth’sreturn,andfive-yearreturn,respectively.Theconstructionofcurrencyfactorsisfurtherdetailedin
Internet
AppendixA
andtheirperformancestatisticsarereportedin
InternetAppendixTableA.1
.
Ireporttheregressionresultsof
Equation(4)
in
Table4
.
1Tosavespace,
Figure2
alsodisplaysthecumulativereturnofastrategythatusesStrengthratio(definedin
Equation(1)
)asthesignal.Thisstrategywillbediscussedin
Section6.2.1
.
11
Table4
abouthere
ThefindingsindicatethattheAIFXstrategy’sreturnsarenotfullyexplainedbythecommoncurrencyfactors,andthisconclusionholdsacrossdifferentlookbackperiods.Forexample,witha48-monthlookbackperiod,thestrategyyieldsastatisticallysignificantalphathataccountsfor74%oftheaveragereturnofthestrategy,suggestingthatonlyaboutone-quarterofthereturnissubsumedbytraditionalcurrencyfactors.Notably,forlookbackperiodsof54and60months,thealphabecomesonlymarginallysignificant,astheValuefactorgainsmoreexplanatorypower.Overall,theanalysispresentedinthissectionprovidesstrongevidencethattheAIFXindexpossessessignificantpredictivepower.ThesefindingssuggestthatAIcanhelpuncoverpreviouslyunderexploredsourcesofreturnpredictabilityintheFXmarket,contributingtoarenewedconnectionbetweenexchangeratesandunderlyingeconomicfundamentals.
4.2PanelRegression
ToassessthestatisticalsignificanceofthepredictivepoweroftheAIFXindex,Iestimatethefollowingpanelregressionmodelforeachchoiceoflookbackperiod:
Rc;t+1=αt;τ+βτAIFXc;t;τ+∈c;t;τ(5)
In
Equation(5)
,Rc;t+1representsth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3年前財務(wù)制度
- 工程分公司財務(wù)制度
- 南婁鎮(zhèn)村級財務(wù)制度
- 醫(yī)院財務(wù)制度管理辦法
- 蘭克式研討班制度
- 公司在大幾推行輪崗制度
- 施工現(xiàn)場施工防生物毒素泄漏制度
- 海事不誠信行為管理制度(3篇)
- 播音協(xié)會活動策劃方案(3篇)
- 云頂幕墻施工方案(3篇)
- 浦發(fā)銀行貸款合同模板
- 語文七年級下字帖打印版
- 基于機器學(xué)習的缺陷預(yù)測技術(shù)
- 單片機原理及應(yīng)用課設(shè)計
- 08年常德地理會考試卷及答案
- QC成果提高衛(wèi)生間防水合格率匯報
- GB/T 34956-2017大氣輻射影響航空電子設(shè)備單粒子效應(yīng)防護設(shè)計指南
- GB/T 31831-2015LED室內(nèi)照明應(yīng)用技術(shù)要求
- 山東省實習律師面授考試往期考題及法條匯編
- 股東名冊(范本)
- 天獅宜首康多功能保健儀課件
評論
0/150
提交評論