人工智能與匯率可預(yù)測性研究 AI and Exchange Rate Predictability_第1頁
人工智能與匯率可預(yù)測性研究 AI and Exchange Rate Predictability_第2頁
人工智能與匯率可預(yù)測性研究 AI and Exchange Rate Predictability_第3頁
人工智能與匯率可預(yù)測性研究 AI and Exchange Rate Predictability_第4頁
人工智能與匯率可預(yù)測性研究 AI and Exchange Rate Predictability_第5頁
已閱讀5頁,還剩121頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

AIandExchangeRatePredictability

AminIzadyar

ImperialCollegeBusinessSchool,ImperialCollegeLondon

Email:a.izadyar23@imperial.ac.uk

July3,2025

Abstract

Irevisittheexchangeratedisconnectpuzzle,firstdocumentedby

MeeseandRogoff

(

1983

),usinggenerativeartificialintelligence(AI)toforecastcurrencyreturnsbasedoneconomicfundamentals.UsingChatGPTandDeepSeek,Ianalyzeacomprehensivedatasetofeconomicdatareleasesformajorcurrencypairsandmeasurethefunda-mentalstrengthofeachcurrency.TheseAI-poweredfundamentalsexhibitsignificantcross-sectionalpredictivepower.AsimpletradingstrategythatgoeslongcurrencieswithstrongfundamentalsandshortcurrencieswithweakfundamentalsgeneratesaSharperatioexceeding0.7perannum.Theexcessreturnsofthisstrategyremainsignificantaftercontrollingfortraditionalcurrencyfactors.Tomitigateconcernsoflook-aheadbias,IrunmultipleexercisestoensurethatpredictabilitystemsfromAIreasoningratherthanmemorization.Finally,Iexplorethepotentialsourcesofpre-dictabilityandfindevidencethattheTaylorruleframework,generallyusedbycentralbankstosetinterestrates,isakeymechanismconnectingexchangeratestoeconomicfundamentals.

Keywords:ForeignExchange,ReturnPredictability,LargeLanguageModels,ChatGPT,ArtificialIntelligence

JELClassification:C53,F31,F37,G12,G15.

1

1Introduction

Theabilityofeconomicfundamentalstoforecastexchangeratesremainselusive,sincemod-elsbasedonfundamentalsareoftenoutperformedbyasimplerandomwalk,aphenomenonknownasthe“exchangeratedisconnect”puzzle(e.g.,

MeeseandRogoff

,

1983

).Althoughtherecentliteraturehasidentifiedafeweconomicvariablesthatappeartohavepredictivepower,theanswertothisempiricalpuzzleremainsunresolved(e.g.,

Mark

,

1995

;

Engeland

West

,

2005

;

Rossi

,

2013

).

Againstthisbackdrop,theemergenceofartificialintelligence(AI)offersnewopportunitiestore-examinethispuzzle.AI’srecentadvancementshaveenabledittosolveproblemsonceconsideredtoocomplexordata-intensivefortraditionalmethods.Motivatedbythesedevel-opments,IleverageAI’sreasoningpowerandproficiencyinhandlinglargedatasetstostudyacomprehensivedatasetofeconomicdatareleases,coveringover500indicatorsfrom1996to2024formajoreconomies.Thisstudyaimstofindalinkbetweenexchangeratesandeco-nomicfundamentals,thusenhancingourunderstandingofpricediscoveryinthelargestanddeepestfinancialmarketintheworld.Topreviewmyresults,IfindevidencethatAI-derivedfundamentalscanpredictfutureexchangeratereturnsandthemostimportantpredictorsareInflationdata,Employmentdata,andBroadeconomicactivityindicators.

Usinglargelanguagemodels(LLMs)likeGPT-4oandDeepSeek-V3,Ianalyzealargedatasetcomprisingrealizedvalues,previousfigures,andconsensusforecastsofkeyeconomicdatareleases,suchasGDPreports,employmentstatistics,inflationindices,andcentralbankdecisions.IinteractwiththeAImodelusingastructuredpromptandaskittogenerateaconciseanalysisandadirectionalsignalindicatingwhetherthedatareleaseimpliesthecurrencywouldSTRENGTHEN,WEAKEN,orhasanINSIGNIFICANTORUNCERTAINimpact.Notably,theinputprovidedtothemodelincludesonlytherealized,previous,andforecastvalues,alongwiththenameofthecurrencyassociatedwiththedatarelease,exclud-inganyinformationaboutthetimeordateoftherelease.UsingAI’soutput,Ithenconstructasimplemeasure,calledtheAIFXindex,thatcapturesthenetfundamentalstrengthofeachcurrency.Specifically,foreachcurrency,theAIFXindexisdefinedasthedifferencebetweenthenumberofpositive(directionalsignalas“STRENGTHEN”)andnegative(“WEAKEN”)

2

signals,dividedbythetotalnumberofsignals,overagivenlookbackwindow.

TheAIFXindexexhibitssignificantcross-sectionalpredictivepower.Asimpletradingstrat-egy,calledtheAIFXstrategy,thatgoeslongcurrencieswithastrongAIFXindexandshortcurrencieswithaweakAIFXindexproducesanannualizedSharperatiolargerthan0.7.Moreover,aftercontrollingfortraditionalcurrencyfactorslikedollar,dollarcarry,carry,momentum,andvalue,Iuncoverastatisticallysignificantalphathataccountsfor74%oftheAIFXstrategy’saveragereturn.Ifurthervalidatetheresultthroughapanelregressionexercise,showingthattheAIFXindexeffectivelypredictsnextmonthexchangeratereturns.Takentogether,thesefindingssuggestthatAIcanhelpuncoverpreviouslyunderexploredsourcesofreturnpredictabilityintheFXmarket,thussheddinglightontheroleofeconomicfundamentals,asadvocatedbythetheoreticalliterature.

Iconductmultiplerobustnesscheckstoensurethereliabilityofthebaselineresults.First,whilethemainanalysisusesGPT-4otointerpretdatareleases,IreplicatetheentireexerciseusingDeepSeekV3totestthesensitivityofthecorefindingstothechoiceofAImodel.Theresultsremainconsistent,withbothmodelsexhibitingverysimilarperformance.Second,Iconstructanalternativemeasure,theWeightedAIFXindex,whichassignsaweighttoeachdirectionalsignalbasedonitsestimatedlevelofimportance.Iusethisweightedindexasthesignalinacross-sectionaltradingstrategyandfindthatthecoreresultsremainrobust.Third,Ialsoimplementatime-seriestradingstrategyasanalternativetothecross-sectionalstrategyusedinthebaselinespecification.Thetime-seriesstrategyalsogenerateseconomi-callymeaningfulSharperatios,anditsperformanceremainssignificantaftercontrollingforbenchmarkcurrencyfactors.

AmajorconcernwhenusingLLMsforpredictiontasksislook-aheadbias,whichoccurswhenamodelistrainedusinginformationnotavailableatthetimeoftheprediction.Asaresult,themodel’sperformancemaylookbetterthanitwouldbeinreal-time.Tomitigatethisconcern,Iimplementfourdifferentexercises.Inthefirstone,IinvestigatewhethertheAImodelmayimplicitly“remember”thetimingofadatarelease.Specifically,IusethesamedatathatwasfedtotheAImodeltogeneratethedirectionalsignals,butthistimeIaskittoindicatetheyear(nottheexactdate)whenthedatawasreleased.IftheAImodelcanrecallthetimingoftherelease,weshouldexpectittocorrectlyidentifythereleaseyear

3

inahighproportionofcases.However,thedistributionofyearsguessedbytheAImodeldiffersmarkedlyfromthetruedistributionofdatareleasesinthedataset.Ishowthatonly5.6%ofthemodel’sguessesarecorrectonaveragewithineachyear.Inthesecondexercise,Iexploitthefactthattheknowledgecut-offdateforGPT-4oisOctober2023,whileforGPT-3.5itisSeptember2021.Thistwo-yeargapprovidesanopportunitytoexaminewhethertherelativeperformanceofthetwomodelsdifferssignificantly.Specifically,Icomparetheirperformanceduringtheperiodfrom1996to2021,coveredbybothmodels’trainingsets,totheperiodfrom2021to2023,whichonlyGPT-4owastrainedon.Iflook-aheadbiaswerepresent,wewouldexpectasharpdeclineintherelativeperformanceofGPT-3.5afteritstrainingperiodends,comparedtoGPT-4o.Totestthis,Iconductadifference-in-differencesanalysisandfindthattherelativeperformanceofthetwomodelsdoesnotdiffersignificantlyacrossthetwoperiods.Inthethirdexercise,ItestforthepossibilitythattheAImodelmayhaveamemoryoftheoverallrelationshipbetweenexchangeratereturnsandcertainmacro-variables.Forexample,ifthemodelwastrainedduringaperiodwheninflationandcurrencyreturnswerepositivelycorrelated,itmightpredicthigherexchangeratesinresponsetoris-inginflation,basedonmemoryandnotreasoning.Therefore,IinvestigatewhethertheAImodelhasamemoryoftherealizedcorrelationofmacrovariableswithnextmonthcurrencyreturnsoverthesampleperiod,butfindnoevidenceindicatingso.Inthefourthexercise,IconstructaportfoliobasedonwhattheAImodelcanrememberaboutmonthlycurrencyreturnsduringthesampleperiod,referredtoasthepurehindsightportfolio,anduseitasacontrolfactor.IfindthatthereturnoftheAIFXstrategyisorthogonaltothereturnofthepurehindsightportfolio.Overall,thesefindingscollectivelysuggestthattheAImodel’sperformanceisunlikelytobedrivenbylook-aheadbias,andshouldreflectgenuinereasoningbasedontheinformationavailableatthetimeofprediction.

AfterestablishingthepredictivepoweroftheAI-derivedvariables,Iinvestigatetheunder-lyingsourcesofthispredictability.Thisstepiscrucialfromaneconomicstandpoint,asitshedslightonthepossiblemechanismsthroughwhichfundamentalsinfluenceexchangeratemovements.First,IfindthatInflationdata,Employmentdata,andBroadeconomicactivityindicatorsarethemostimportantcategoriesforforecastingexchangerates.Thesevariablesarecloselylinkedtothemonetarypolicyframeworkproposedby

Taylor

(

1993

),

4

suggestingthatcentralbanks,policyresponsestoeconomicconditionsplayapivotalroleinexchangeratedetermination.Thisinterpretationissupportedbypriorempiricalstud-iessuchas

ClaridaandWaldman

(

2007

),

MolodtsovaandPapell

(

2009

),and

Engeland

Wu

(

2024

),whichdocumentthepredictivepowerofTaylor-rulefundamentalsforexchangerates.Second,Ifindthatthepredictivesignalislargelydrivenbypositivenews(newsim-plyingcurrencyappreciation)ratherthannegativenews(implyingdepreciation).Furtheranalysisrevealsthatnegativenewstendstotriggerastrongerimmediatemarketreactionthanpositivenews,consistentwiththefindingsof

Andersenetal.

(

2003

).Asaresult,neg-ativenewsmayleavelessroomfordelayedexchangerateadjustments,therebyreducingitspredictivecontentatlongerhorizons.Aplausibleinterpretationisthatthisasymmetryinmarketreactionispartlydrivenbythewaycentralbanksimplementmonetarypolicy.Inparticular,severalstudieshavedocumentedthatmonetaryauthoritiestendtorespondmoreaggressivelytonegativeoutputgapsthantopositiveones,leadingtoageneralbiastowardlowerinterestrates(

Juanetal.

,

2004

;

BrüggemannandRiedel

,

2011

;

Hofmannand

Bogdanova

,

2012

;

Komlan

,

2013

).Thepoliticaleconomyofmonetarypolicyalsoreinforcesthisasymmetrictendency.Ratehikescanbepoliticallyunpopularastheymayslowtheeconomyorincreaseborrowingcosts.Thisasymmetricpolicystancecaninfluenceinvestors,expectations,promptingstrongerimmediatereactiontonegativenewsandcontributingtotheasymmetricpredictivepowerdocumentedinthisstudy.Takentogether,theempiricalfindingspointtotheimportanceoftheTaylorruleandmonetarypolicyinexplainingex-changeratemovements.Nonetheless,alternativeexplanationscannotbedefinitivelyruledout.

Thisresearchcontributestotwostrandsofliterature.Thefirstinvolvesthewell-known“ex-changeratedisconnect”puzzle,firstobservedby

MeeseandRogoff

(

1983

).Theirfindings,seenasshockingatthetime,promptedalargeliteraturethatre-examinedtherobustnessoftheresults(

Mark

,

1995

;

Kilian

,

1999

;

Cheungetal.

,

2005

;

MolodtsovaandPapell

,

2009

).However,theearlyempiricalstudieswereinconclusiveinaddressingthepuzzle.Anotablecontributioninthiscontextis

EngelandWest

(

2005

),whoofferapotentialresolution.Theydemonstrateanalyticallythatexchangeratescanbeconsistentwithpresentvalueassetpricingmodelsandfollowaprocessarbitrarilyclosetoarandomwalkifcertainconditions

5

aremet.Followingthis,

Engeletal.

(

2007

)presentadefenseofexchangeratemodelsbyarguingthatarandomwalkmodelisatoughbenchmarktobeatandproposealternativemethodsforevaluatingtheperformanceofexchangeratemodels.Inaddition,recentempiri-calstudiessuggestaconnectionbetweencurrencyreturnsandcountries’externalimbalances(

GourinchasandRey

,

2007

;

DellaCorteetal.

,

2012

,

2016

),sovereignrisk(

Augustinetal.

,

2020

;

DellaCorteetal.

,

2022

,

2023

),theoutputgap(

Colacitoetal.

,

2020

),macroeconomicuncertainty(

BergandMark

,

2018

;

DellaCorteandKrecetovs

,

2024

),andunemployment(

Nucera

,

2017

).Notably,thepatternofpredictabilitydocumentedinthispaperisconsistentwiththefindingsof

DahlquistandHasseltoft

(

2020

),whoexaminehowpasttrendsinkeymacroeconomicindicators,referredtoaseconomicmomentum,canpredictcurrencyreturns.ThispaperadvancestheexistingliteraturebyusinganovelAI-poweredmethodologytoan-alyzeanexpandedsetofeconomicindicators.Thisinnovativeapproachhelpsuncovernewpredictabilitypatternsandprovidesnewinsightsintoexchangeratemovements.

Second,thisprojectaddstothebodyofliteratureonnovelresearchmethodsinfinancialeconomicsthatleveragegenerativeAI.Forexample,

EisfeldtandSchubert

(

2024

)conductacomprehensivesurveyofhowthisemergingtechnologycandecreasethetimeandcostsasso-ciatedwithtraditionalresearchdesignsinfinancewhileenablingnovelanalyticalapproaches.Emergingapplicationsincludegeneratingdataembeddings(

Gabaixetal.

,

2024

;

Kimetal.

,

2024

),textclassification(

Changetal.

,

2024

;

Krockenbergeretal.

,

2024

),retrieval-augmentedgeneration(

Bartiketal.

,

2024

;

ChenandWang

,

2024

),simulatingagentbehavior(

Horton

,

2023

;

Fedyketal.

,

2024

;

Hewittetal.

,

2024

),andhypothesisgeneration(

Sietal.

,

2024

;

LudwigandMullainathan

,

2024

).Specifically,thepromptingtechniqueemployedinthisstudyismostsimilartotheapproachesusedinthefollowingpapers.

Bybee

(

2023

)usesAItogenerateeconomicexpectationsfromhistoricalnewsdataspanning120years.Inaddi-tion,

Lopez-LiraandTang

(

2024

)and

Chenetal.

(

2024

)exploretheabilityofgenerativeAI,specificallyChatGPT,topredictstockpricemovementsbasedonsentimentsextractedfrombusinessnewsheadlines.Incontrasttothesepapers,whichfocusonsentimentextractionfromtextualdata,thisstudydoesnotaimtoextractsignalsfromtext.Instead,itreliesonstructured,numericaldata,andtheAImodelispromptedtogenerateanalysisbasedonthenumericalvaluesofeconomicdatareleases.Overall,thispapercontributestothe

6

existingliteraturebydemonstratingAI’scapabilitytoanalyzelargevolumesofstructureddatainthecontextofcurrencymarkets.Inaddition,itintroducesnewtechniquestoaddresslook-aheadbias.

Theremainderofthepaperisorganizedasfollows;

Section2

presentsthedata;

Section3

outlinestheconstructionoftheAI-poweredvariables;

Section4

evaluatesthepredictivepowerofthesevariables;

Section5

investigatestheissueoflook-aheadbias;

Section6

ex-plorestheunderlyingmechanismsdrivingthepredictability;and

Section7

concludes.Aseparate

InternetAppendix

providesadditionalresultsnotincludedinthemainbodyofthispaper.

2Data

IfocusonG-10currenciesthatincludetheUnitedStatesdollar(USD),Euro(EUR),Japaneseyen(JPY),Britishpoundsterling(GBP),Swissfranc(CHF),Canadiandollar(CAD),Australiandollar(AUD),NewZealanddollar(NZD),Swedishkrona(SEK),andNorwegiankrone(NOK).Ilimitmyfocustothesecurrenciesbecauseofthelonghistoryofeconomicdatareleasesavailable.Tomeasuretheeconomicfundamentalsofeachcurrency,IhavecollectedtheeconomiccalendardatafromI.Theeconomiccalendaraggregateskeyeconomicdatareleases,suchasGDPreports,employmentstatistics,infla-tionreadings,centralbankdecisions,andothereconomicindicators(544uniqueindicators),acrossmultiplecountries.Itprovides,foreachdatarelease,therealizedvalue,thepreviousfigure,andtheconsensusforecast.ThedatasetspansfromJanuary1996toOctober2024andcomprisesatotalof174,820datapoints.

Table1

displaysthenumberofobservationscollectedforeachcurrency.Inaddition,Ihavecollectedend-of-day(Londontime)exchangeratesandone-monthforwardratesfromBloomberg.Notably,therearenineexchangeratesinthecross-section,andallratesaredefinedastheamountofU.S.dollars(USD)requiredtopurchaseoneunitofforeigncurrency(FCU).

Table2

reportssummarystatisticsforexchangeratereturns.

Table1

and

Table2

abouthere

7

3AnalysingDataReleases

3.1AIasafinancialAnalyst

Foreachdatareleaseintheeconomiccalendardata,Ifeedstructuredprompts,asin

Prompt1

,toGPT-4ousingAPIs.Thepromptcontainsthetitle,realizedvalue,previousfigure,andtheconsensusforecastofthedatareleaseandinstructstheAImodeltogenerateaconciseanalysisandadirectionalsignalindicatingwhetherthedatareleaseimpliesthecurrencywouldSTRENGTHEN,WEAKEN,orhasanINSIGNIFICANTORUNCERTAINimpact.In

Prompt1

,{currency}willcorrespondtothecurrencyassociatedwiththedatarelease.Notably,Iexcludeanyinformationaboutthetimeordateoftherelease.

Prompt:Forgetallpreviousinstructions.Youareafinancialanalyst.Youwillbegivenanewsheadline.Pleaseanalyzethenews’seffecton{currency}andprovideabriefresponse.Thenindicatewhetherthisheadlineimplies{currency}willSTRENGTHEN,WEAKEN,orhaveanINSIGNIFICANTORUNCERTAINeffect.Generatetheoutput

inthisformat:{(ANALYSIS:shortanalysisdiscussingthechannel),(DIRECTION:oneofSTRENGTHEN,WEAKEN,INSIGNIFICANTORUNCERTAIN)}

Prompt1

Asillustratedin

Example1

,

Example2

,and

Example3

,theoutputexplainsthemechanismofhowthereleasecouldaffecttheassociatedcurrencyandindicatesthepotentialdirectionofchange.

?Currency:AUD

?Input:Newsheadline:TradeBalance(monthly),Actual:4.502B,Forecast:6.100B,Previous:7.180B

?Output:Analysis:Thetradebalancefigurecameinlowerthanboththeforecastandthepreviousmonth,indicatingasmallerthanexpectedsurplus.Thiscouldsuggestthatexportshavedecreasedorimportshaveincreasedmorethananticipated,potentiallysignalingweakereconomicactivity.AlowertradebalancecannegativelyimpactthecurrencyasitimpliesthatfewerAustraliandollarsaredemandedininternationalmarketstopurchaseAustraliangoodsandservices.,Direction:WEAKEN.

Example1

8

?Currency:CAD

?Input:Newsheadline:GDP(MoM),Actual:0,Forecast:0.001,Previous:0.006

?Output:Analysis:TheCanadianGDPmonth-on-monthgrowthrateisrecordedat0%,whichisbelowtheforecastof0.1%andsignificantlylowerthantheprevi-ousmonth’s0.6%.ThisstagnationsignalsaslowdownineconomicgrowthandmaydampeninvestorsentimenttowardstheCanadiandollar.AsGDPisakeyindicatorofeconomichealth,alowerthanexpectedperformancecanleadtoexpectationsofamoreaccommodativemonetarypolicyfromtheBankofCanada,potentiallyputtingdownwardpressureontheCAD.,Direction:WEAKEN.

Example2

?Currency:GBP

?Input:Newsheadline:CPI(MoM),Actual:0.004,Forecast:0.003,Previous:0.002

?Output:Analysis:TheConsumerPriceIndex(CPI)measuresthechangeinthepricelevelofabasketofgoodsandservices.Ahigher-than-expectedCPIindicatesincreasedinflationarypressures.TheactualCPIof0.004surpassesboththeforecastof0.003andthepreviousvalueof0.002.Thissuggestsstrongerinflationarytrends,potentiallyleadingtoexpectationsoftightermonetarypolicybytheBankofEngland.Higherinterestratesgenerallyleadtocurrencyappreciationastheyattractforeigninvestmentseekinghigherreturns.,Direction:STRENGTHEN.

Example3

Toclarifytheterminology,throughoutthispaper,IrefertodatareleaseswiththedirectionlabeledasSTRENGTHENintheoutputaspositivenews,thoselabeledasWEAKENasnegativenews,andthoselabeledasINSIGNIFICANTORUNCERTAINasneutralnews.

Table1

presentsadetailedbreakdownofthecountandpercentageofpositive,negative,andneutralnewsforeachcurrencyduringthesampleperiod,providinginsightsintothedistributionofoutputsfromtheAImodel.

3.2VariableConstruction

IfollowasimpleandintuitiveapproachtoconstructthreeAI-poweredvariables.Supposeweareattimetandletτdenotethelookbackperiod.Therefore,thetimeintervalL=(t-τ,t]wouldbethelookbackwindowattimet.Basedonthis,Iconstructthefollowingvariables

9

forcurrencyc:

AIFXc;t;τ=Strengthc;t;τ-Weaknessc;t;τ(3)

TheStrengthratiocapturestheproportionofpositivenews,whiletheWeaknessratiomea-surestheproportionofnegativenews.TheAIFXindexisdefinedasthenetbalancebetweenpositiveandnegativenews,providingasinglecompositemetricofimpliedcurrencystrengthderivedfromAI-classifieddata.

4PerformanceEvaluation

Inthissection,IanalyzethepredictivepoweroftheAI-derivedvariables.Ibeginbycon-structingcross-sectionaltradingstrategiesthatusetheAIFXindexasthesignal,evaluatedacrossarangeoflookbackperiods.Theperformanceofthesestrategiesisthenassessedrelativetocommoncurrencyfactors.ToformallytestthestatisticalsignificanceoftheAIFXindexinpredictingfuturereturns,Iestimatepanelregressions.Toensurerobustness,theentireanalysisisreplicatedusingDeepSeek-V3,aleadingalternativetothebaselinemodelGPT-4o.Next,IintroduceanalternativespecificationoftheAI-poweredvariablesbyweightingeachdatareleaseaccordingtoitsestimatedeconomicimportance.Finally,Iim-plementatime-seriesstrategybasedonthesamesignalandfurtherdecomposethepredictivecomponenttoisolatetheroleofU.S.dollarfundamentals.

4.1Cross-sectionalTradingStrategy

IassessthepredictivepoweroftheAIFXindex(asdefinedin

Equation(3)

),usingstylizedcross-sectionaltradingstrategies.Notably,toevaluatethesensitivityofperformancetothelengthoflookbackwindow,Iconsiderlookbackperiodsof1to60months.Specifically,foreachchoiceoflookbackperiod,currenciesaresortedbytheirAIFXindexattheendofeachmonthandItakelongpositionsinthetoptwocurrencieswiththehighestAIFXindexandshortpositionsinthebottomtwowiththelowest.Irefertothisstrategyasthe

10

AIFXstrategy.

Figure1

presentstheannualizedSharperatiosofthestrategyacrossdifferentlookbackperiods.

Figure1

abouthere

TheAIFXstrategyconsistentlyyieldspositiveSharperatiosacrossalllookbackperiods,witheconomicallysignificantperformanceinmostcases.Predictivepowerappearsparticularlystrongforlookbackperiodsof36to60months.Additionally,

Table3

reportstheperformancestatisticsoftheAIFXstrategy,includingthemean,standarddeviation,skewness,excesskurtosisandfirst-orderautocorrelationofreturns.

Figure2

illustratesthedollarvalueofaninitial$1investmentintheAIFXstrategy

1

.Avisualinspectionofthefigureindicatesageneralupwardtrendinperformance,withgainsdistributedrelativelyevenlythroughoutthesampleperiod.

Figure3

showstheportfoliocompositionovertime.Thestrategyexhibitsmoderateturnover,implyingthattransactioncostsareunlikelytosignificantlyerodereturns.

Table3

,

Figure2

and

Figure3

abouthere

Tofurtherexaminetheperformance,Iruncontemporaneousregressionsbasedon:

RXt;τ=ατ+β1;τDollart+β2;τDollarCarryt+β3;τCarryt+

β4;τMomentumt+β5;τValuet+∈t;τ(4)

whereRXt;τdenotesthemonthlyexcessreturnoftheAIFXstrategywithlookbackperiodτ;Dollarisalong-onlyportfoliothattakesequal-weightedlongpositionsinallcurrencies;DollarCarryisadirectionalstrategythatgoeslong(short)allcurrencieswhentheaverageforwarddiscountispositive(negative);Carry,Momentum,andValuearecross-sectionalstrategiesthatrankcurrenciesbytheirforwarddiscount,previousmonth’sreturn,andfive-yearreturn,respectively.Theconstructionofcurrencyfactorsisfurtherdetailedin

Internet

AppendixA

andtheirperformancestatisticsarereportedin

InternetAppendixTableA.1

.

Ireporttheregressionresultsof

Equation(4)

in

Table4

.

1Tosavespace,

Figure2

alsodisplaysthecumulativereturnofastrategythatusesStrengthratio(definedin

Equation(1)

)asthesignal.Thisstrategywillbediscussedin

Section6.2.1

.

11

Table4

abouthere

ThefindingsindicatethattheAIFXstrategy’sreturnsarenotfullyexplainedbythecommoncurrencyfactors,andthisconclusionholdsacrossdifferentlookbackperiods.Forexample,witha48-monthlookbackperiod,thestrategyyieldsastatisticallysignificantalphathataccountsfor74%oftheaveragereturnofthestrategy,suggestingthatonlyaboutone-quarterofthereturnissubsumedbytraditionalcurrencyfactors.Notably,forlookbackperiodsof54and60months,thealphabecomesonlymarginallysignificant,astheValuefactorgainsmoreexplanatorypower.Overall,theanalysispresentedinthissectionprovidesstrongevidencethattheAIFXindexpossessessignificantpredictivepower.ThesefindingssuggestthatAIcanhelpuncoverpreviouslyunderexploredsourcesofreturnpredictabilityintheFXmarket,contributingtoarenewedconnectionbetweenexchangeratesandunderlyingeconomicfundamentals.

4.2PanelRegression

ToassessthestatisticalsignificanceofthepredictivepoweroftheAIFXindex,Iestimatethefollowingpanelregressionmodelforeachchoiceoflookbackperiod:

Rc;t+1=αt;τ+βτAIFXc;t;τ+∈c;t;τ(5)

In

Equation(5)

,Rc;t+1representsth

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論