七年級下學期期末壓軸題測試數(shù)學試題解析_第1頁
七年級下學期期末壓軸題測試數(shù)學試題解析_第2頁
七年級下學期期末壓軸題測試數(shù)學試題解析_第3頁
七年級下學期期末壓軸題測試數(shù)學試題解析_第4頁
七年級下學期期末壓軸題測試數(shù)學試題解析_第5頁
已閱讀5頁,還剩39頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.在如圖所示的平面直角坐標系中,A(1,3),B(3,1),將線段A平移至CD,C(m,-1),D(1,n)(1)m=_____,n=______(2)點P的坐標是(c,0)①設∠ABP=,請寫出∠BPD和∠PDC之間的數(shù)量關系(用含的式子表示,若有多種數(shù)量關系,選擇一種加以說明)②當三角形PAB的面積不小于3且不大于10,求點p的橫坐標C的取值范圍(直接寫出答案即可)2.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結FA、FB,E是射線FA上的一點,若,,且,求n的值.3.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設,且.(1)________,________;直線與的位置關系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關系?并證明你的結論.(3)若將圖中的射線繞著端點逆時針方向旋轉(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.4.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長方形直尺DEFG的EF邊上.(1)根據圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點逆時針旋轉n°.①如圖2,當n=25°,且點C恰好落在DG邊上時,求∠1、∠2的度數(shù);②當0°<n<180°時,是否會存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請直接寫出所有n的值和對應的那兩條垂線;如果不存在,請說明理由.5.如圖,∠EBF=50°,點C是∠EBF的邊BF上一點.動點A從點B出發(fā)在∠EBF的邊BE上,沿BE方向運動,在動點A運動的過程中,始終有過點A的射線AD∥BC.(1)在動點A運動的過程中,(填“是”或“否”)存在某一時刻,使得AD平分∠EAC?(2)假設存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之間有何數(shù)量關系?并請說明理由;(3)當AC⊥BC時,直接寫出∠BAC的度數(shù)和此時AD與AC之間的位置關系.6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.我們知道,任意一個正整數(shù)都可以進行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因為,所以是的最佳分解,所以(1)填空:;;(2)一個兩位正整數(shù)(,,,為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;8.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據以上規(guī)律求1+3+32+…+349+350的結果.9.數(shù)學中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據定義,填空:_________,__________.②若有如下運算性質:.根據運算性質填空,填空:若,則__________;___________;③下表中與數(shù)x對應的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.10.觀察下列各式,并用所得出的規(guī)律解決問題:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動______位,其算術平方根的小數(shù)點向______移動______位.(2)已知,,則_____;______.(3),,,……小數(shù)點的變化規(guī)律是_______________________.(4)已知,,則______.11.閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,而<2于是可用來表示的小數(shù)部分.請解答下列問題:(1)的整數(shù)部分是_______,小數(shù)部分是_________;(2)如果的小數(shù)部分為的整數(shù)部分為求的值;(3)已知:其中是整數(shù),且求的平方根.12.觀察下列各式:;;;……根據上面的等式所反映的規(guī)律,(1)填空:______;______;(2)計算:13.如圖,已知點,點,且,滿足關系式.(1)求點、的坐標;(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當三角形和三角形的面積相等時,求移動時間和點的坐標.14.已知,AB∥CD,點E在CD上,點G,F(xiàn)在AB上,點H在AB,CD之間,連接FE,EH,HG,∠AGH=∠FED,F(xiàn)E⊥HE,垂足為E.(1)如圖1,求證:HG⊥HE;(2)如圖2,GM平分∠HGB,EM平分∠HED,GM,EM交于點M,求證:∠GHE=2∠GME;(3)如圖3,在(2)的條件下,F(xiàn)K平分∠AFE交CD于點K,若∠KFE:∠MGH=13:5,求∠HED的度數(shù).15.如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).(1)則A點的坐標為;點C的坐標為,D點的坐標為.(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結束.設運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關系,并說明理由.16.對于三個數(shù),,,表示,,這三個數(shù)的平均數(shù),表示,,這三個數(shù)中最小的數(shù),如:,;,.解決下列問題:(1)填空:______;(2)若,求的取值范圍;(3)①若,那么______;②根據①,你發(fā)現(xiàn)結論“若,那么______”(填,,大小關系);③運用②解決問題:若,求的值.17.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應,點O與點C對應,a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標.18.如圖所示,在直角坐標系中,已知,,將線段平移至,連接、、、,且,點在軸上移動(不與點、重合).(1)直接寫出點的坐標;(2)點在運動過程中,是否存在的面積是的面積的3倍,如果存在請求出點的坐標,如果不存在請說明理由;(3)點在運動過程中,請寫出、、三者之間存在怎樣的數(shù)量關系,并說明理由.19.一列快車長70米,慢車長80米,若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,求兩車每秒鐘各行多少米?20.已知:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,某物流公刊現(xiàn)有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.根據以上信息,解答下列問題:(1)l輛A型車和l輛B型車都載滿貨物一次可分別運貨多少噸?(2)請你幫該物流公司設計租車方案;(3)若A型車每輛需租金200元/次,B型車每輛需租金240元/次,請選出最省錢的租車方案,并求出最少租車費.21.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內的點,過作軸于,若,且,求點的坐標.22.甲從A地出發(fā)步行到B地,乙同時從B地步行出發(fā)至A地,2小時后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小時.若設甲剛出發(fā)時的速度為a千米/小時,乙剛出發(fā)的速度為b千米/小時.(1)A、B兩地的距離可以表示為千米(用含a,b的代數(shù)式表示);(2)甲從A到B所用的時間是:小時(用含a,b的代數(shù)式表示);乙從B到A所用的時間是:小時(用含a,b的代數(shù)式表示).(3)若當甲到達B地后立刻按原路向A返行,當乙到達A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小時36分鐘又再次相遇,請問AB兩地的距離為多少?23.在平面直角坐標系中,點,點,點.(1)的面積為______;(2)已知點,,那么四邊形的面積為______.(3)奧地利數(shù)學家皮克發(fā)現(xiàn)了一類快速求解格點多邊形的方法,被稱為皮克定理:如果用m表示格點多邊形內的格點數(shù),n表示格點多邊形邊上的格點數(shù),那么格點多邊形的面積S和m與n之間滿足一種數(shù)量關系.例如剛剛求解的幾個多邊形面積中,我們可以得到如表中信息:形內格點數(shù)m邊界格點數(shù)n格點多邊形面積S611四邊形811五邊形208根據上述的例子,猜測皮克公式為______(用m,n表示),試計算圖②中六邊形的面積為______(本大題無需寫出解題過程,寫出正確答案即可).24.學校組織名同學和名教師參加校外學習交流活動現(xiàn)打算選租大、小兩種客車,大客車載客量為人/輛,小客車載客量為人/輛(1)學校準備租用輛客車,有幾種租車方案?(2)在(1)的條件下,若大客車租金為元/輛,小客車租金為元/輛,哪種租車方案最省錢?(3)學校臨時增加名學生和名教師參加活動,每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊.同學先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設計租車方案25.某校為了豐富同學們的課外活動,決定給全校20個班每班配4副乒乓球拍和若干乒乓球,兩家體育用品商店對同一款乒乓球拍和乒乓球推出讓利活動,甲商店買一副乒乓球拍送10個乒乓球,乙商店所有商品均打九折(按標價的90%)銷售,已知2副乒乓球拍和10個乒乓球110元,3副乒乓球拍和20個乒乓球170元。請解答下列問題:(1)求每副乒乓球拍和每個乒乓球的單價為多少元.(2)若每班配4副乒乓球拍和40個乒乓球,則甲商店的費用為元,乙商店的費用為元.(3)每班配4副乒乓球拍和m(m>100)個乒乓球則甲商店的費用為元,乙商店的費用為元.(4)若該校只在一家商店購買,你認為在哪家超市購買更劃算?26.如圖,正方形ABCD的邊長是2厘米,E為CD的中點,Q為正方形ABCD邊上的一個動點,動點Q以每秒1厘米的速度從A出發(fā)沿運動,最終到達點D,若點Q運動時間為秒.(1)當時,平方厘米;當時,平方厘米;(2)在點Q的運動路線上,當點Q與點E相距的路程不超過厘米時,求的取值范圍;(3)若的面積為平方厘米,直接寫出值.27.某小區(qū)準備新建個停車位,以解決小區(qū)停車難的問題.已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,(1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.28.我們把關于x的一個一元一次方程和一個一元一次不等式組合成一種特殊組合,且當一元一次方程的解正好也是一元一次不等式的解時,我們把這種組合叫做“有緣組合”;當一元一次方程的解不是一元一次不等式的解時,我們把這種組合叫做“無緣組合”.(1)請判斷下列組合是“有緣組合”還是“無緣組合”,并說明理由;①;②.(2)若關于x的組合是“有緣組合”,求a的取值范圍;(3)若關于x的組合是“無緣組合”;求a的取值范圍.29.如圖所示,A(1,0),點B在y軸上,將三角形OAB沿x軸負方向平移,平移后的圖形為三角形DEC,點C的坐標為(﹣3,2).(1)直接寫出點E的坐標;(2)在四邊形ABCD中,點P從點O出發(fā),沿OB→BC→CD移動,若點P的速度為每秒1個單位長度,運動時間為t秒,請解決以下問題;①當t為多少秒時,點P的橫坐標與縱坐標互為相反數(shù);②當t為多少秒時,三角形PEA的面積為2,求此時P的坐標30.學校美術組要去商店購買鉛筆和橡皮,若購買60支鉛筆和30塊橡皮,則需按零售價購買,共支付30元;若購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.(1)求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?(2)小亮同學用4元錢在這家商店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),共有哪幾種購買方案?【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)-1,-3.(2)①當點P在直線AB,CD之間時,∠BPD-∠PDC=α.當點P在直線CD的下方時,∠BPD+∠PDC=α.當點P在直線AB的上方時,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,利用平移規(guī)律求解即可.(2)①分三種情形求解,如圖1中,當點P在直線AB,CD之間時,∠BPD-∠PDC=α.如圖2中,當點P在直線CD的下方時,∠BPD+∠PDC=α.如圖3中,當點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.分別利用平行線的性質求解即可.②求出點P在直線AB兩側,△PAB的面積分別為3和10時,m的值,即可判斷.【詳解】解:(1)由題意,線段AB向左平移2個單位,向下平移4個單位得到線段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案為:-1,-3.(2)如圖1中,當點P在直線AB,CD之間時,∠BPD-∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如圖2中,當點P在直線CD的下方時,∠BPD+∠PDC=α.理由:過點P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如圖3中,當點P在直線AB的上方時,同法可證∠BPD+∠PDC=α.(3)如圖4中,過點B作BH⊥x軸于H,過點A作AT⊥BH交BH于點T,延長AB交x軸于E.當點P在直線AB的下方時,S△PAB=S梯形ATHP-S△ABT-S△PBH=(2+3-m)?3-×2×2-?(3-m)?1=-m+4,當△PAB的面積=3時,-m+4=3,解得m=1,當△PAB的面積=3時,-m+4=10,解得m=-6,∵△ABT是等腰直角三角形,∴∠ABT=45°=∠HBE,∴BH=EH=1,∴E(4,0),根據對稱性可知,當點P在直線AB的右側時,當△PAB的面積=3時,m=7,當△PAB的面積=3時,m=14,觀察圖象可知,-6<m≤1或7≤m<14.【點睛】本題屬于三角形綜合題,考查了三角形的面積,平行線的判定和性質等知識,解題的關鍵是學會利用分割法求三角形面積,學會尋找特殊位置解決問題,屬于中考??碱}型.2.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長AC、CD交GH于點E、F,先根據角平分線求得,再根據平行線的性質得到;進一步求得,,然后根據三角形外角的性質解答即可;(3)設BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵MN//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長AC、CD交GH于點E、F,∵AC平分且,∴,又∵MN//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經檢驗:是原方程的根,且符合題意.【點睛】本題主要考查平行線的性質及應用,正確作出輔助線、構造平行線、再利用平行線性質進行求解是解答本題的關鍵.3.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(α-35)2+|β-α|=0,即可計算α和β的值,再根據內錯角相等可證AB∥CD;(2)先根據內錯角相等證GH∥PN,再根據同旁內角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據同位角相等證ER∥FQ,得∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質,熟練掌握內錯角相等證平行,平行線同旁內角互補等知識是解題的關鍵.4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據鄰補角的定義和平行線的性質解答;(2)①根據鄰補角的定義求出∠ABE,再根據兩直線平行,同位角相等可得∠1=∠ABE,根據兩直線平行,同旁內角互補求出∠BCG,然后根據周角等于360°計算即可得到∠2;②結合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當n=30°時,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當n=90°時,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當n=120°時,∴AB⊥DE(GF).【點睛】本題考查了平行線角的計算,垂線的定義,主要利用了平行線的性質,直角三角形的性質,讀懂題目信息并準確識圖是解題的關鍵.5.(1)是;(2)∠B=∠ACB,證明見解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;(2)根據角平分線可得∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,則可求∠BAC=40°,由平行線的性質可得AC⊥AD.【詳解】解:(1)是,理由如下:要使AD平分∠EAC,則要求∠EAD=∠CAD,由平行線的性質可得∠B=∠EAD,∠ACB=∠CAD,則當∠ACB=∠B時,有AD平分∠EAC;故答案為:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【點睛】此題考查了角平分線和平行線的性質,熟練掌握角平分線和平行線的有關性質是解題的關鍵.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質得到,等量代換得出,即可根據“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據平行線的性質及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質,熟記平行線的判定與性質及作出合理的輔助線是解題的關鍵.7.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進行計算即可;(2)由題設可以看出交換前原數(shù)的十位上數(shù)字為a,個位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個位上數(shù)字為a,則交換后數(shù)字可以表示為,根據“交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關系式,進而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據樣例分解計算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點睛】本題主要考查了有理數(shù)的運算,理解最佳分解的定義,并將其轉化為有理數(shù)的運算是解題的關鍵.8.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現(xiàn)數(shù)字的變化規(guī)律是解答本題的關鍵.9.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c.【分析】①根據定義可得:f(10b)=b,即可求得結論;②根據運算性質:f(mn)=f(m)+f(n),f()=f(n)-f(m)進行計算;③通過9=32,27=33,可以判斷f(3)是否正確,同樣依據5=,假設f(5)正確,可以求得f(2)的值,即可通過f(8),f(12)作出判斷.【詳解】解:①根據定義知:f(10b)=b,∴f(10)=1,f(103)=3.故答案為:1,3.②根據運算性質,得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020,f(5)=f()=f(10)-f(2)=1-0.3010=0.6990.故答案為:0.6020;0.6990.③若f(3)≠2a-b,則f(9)=2f(3)≠4a-2b,f(27)=3f(3)≠6a-3b,從而表中有三個對應的f(x)是錯誤的,與題設矛盾,∴f(3)=2a-b;若f(5)≠a+c,則f(2)=1-f(5)≠1-a-c,∴f(8)=3f(2)≠3-3a-3c,f(6)=f(3)+f(2)≠1+a-b-c,表中也有三個對應的f(x)是錯誤的,與題設矛盾,∴f(5)=a+c,∴表中只有f(1.5)和f(12)的對應值是錯誤的,應改正為:f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1,f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c.∵9=32,27=33,∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b.【點睛】本題考查了冪的應用,新定義運算等,解題的關鍵是深刻理解所給出的定義或規(guī)則,將它們轉化為我們所熟悉的運算.10.(1)兩;右;一;(2)12.25;0.3873;(3)被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)-0.01【分析】(1)觀察已知等式,得到一般性規(guī)律,寫出即可;(2)利用得出的規(guī)律計算即可得到結果;(3)歸納總結得到規(guī)律,寫出即可;(4)利用得出的規(guī)律計算即可得到結果.【詳解】解:(1),,,……,,,……由此可見,被開方數(shù)的小數(shù)點每向右移動兩位,其算術平方根的小數(shù)點向右移動一位.故答案為:兩;右;一;(2)已知,,則;;故答案為:12.25;0.3873;(3),,,……小數(shù)點的變化規(guī)律是:被開方數(shù)的小數(shù)點向右(左)移三位,其立方根的小數(shù)點向右(左)移動一位;(4)∵,,∴,∴,∴y=-0.01.【點睛】此題考查了立方根,以及算術平方根,弄清題中的規(guī)律是解本題的關鍵.11.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范圍,即可得出答案;(2)先估算出、的范圍,求出a、b的值,再代入求出即可;(3)先估算出的范圍,求出x、y的值,再代入求出即可.【詳解】解:(1)∵4<<5,∴的整數(shù)部分是4,小數(shù)部分是-4,故答案為4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整數(shù),且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【點睛】本題考查了估算無理數(shù)的大小,能估算出、、、的范圍是解此題的關鍵.12.(1);;(2).【分析】(1)根據已知數(shù)據得出規(guī)律,,進而求出即可;(2)利用規(guī)律拆分,再進一步交錯約分得出答案即可.【詳解】解:(1);;(2)===.【點睛】此題主要考查了實數(shù)運算中的規(guī)律探索,根據已知運算得出數(shù)字之間的變化規(guī)律是解決問題的關鍵.13.(1);(2);(3),點C的坐標為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標、算術平方根與偶次冪的非負性及等積法,熟練掌握圖形與坐標、算術平方根與偶次冪的非負性及等積法是解題的關鍵.14.(1)見解析;(2)見解析;(3)40°【分析】(1)根據平行線的性質和判定解答即可;(2)過點H作HP∥AB,根據平行線的性質解答即可;(3)過點H作HP∥AB,根據平行線的性質解答即可.【詳解】證明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)過點M作MQ∥AB,∵AB∥CD,∴MQ∥CD,過點H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)過點M作MQ∥AB,過點H作HP∥AB,由∠KFE:∠MGH=13:5,設∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=∠AFE,即,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【點睛】本題考查了平行線的判定與性質,熟練掌握平行線的判定與性質定理以及靈活構造平行線是解題的關鍵.15.(1),,;(2)存在,;(3)【分析】(1)根據絕對值和算術平方根的非負性,求得a,b的值,得出點A,C的坐標,再運用中點公式求出點D的坐標;(2)根據題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據S△ODP=S△ODQ,列方程求解即可;(3)過點H作HP∥AC交x軸于點P,先證明OG∥AC,再根據角的和差關系以及平行線性質,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設,為線段的中點.,,,故答案為:,,;(2)存在,.由條件可知:點從點運動到點需要時間為2秒,點從點運動到點需要時間2秒,,點在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點作交軸于點,則,,,,∴.【點睛】本題考查了平行線的性質,三角形面積,非負數(shù)的性質,中點坐標公式等,是一道三角形綜合題,解題關鍵是學會添加輔助線,運用轉化的思想思考問題.16.(1);(2);(3)①1,②,③【分析】(1)先求出這些數(shù)的值,再根據運算規(guī)則即可得出答案;(2)先根據運算規(guī)則列出不等式組,再進行求解即可得出答案;(3)根據題中規(guī)定的表示,,這三個數(shù)的平均數(shù),表示,,這三個數(shù)中最小的數(shù),列出方程組即可求解.【詳解】(1),,故答案為:-4;(2)由題意得:,解得:,則x的取值范圍是:;(3),,,;若,則;根據得:,解得:,則,故答案為:1,.【點睛】本題考查了一元一次不等式組的應用,解題關鍵是讀懂題意,根據題意結合方程和不等式去求解,考查綜合應用能力.17.(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負數(shù)的性質求出a,b的值,可得結論.②利用三角形面積公式求解即可.(2)連接DH,根據△ODH的面積+△ADH的面積=△OAH的面積,構建關系式,可得結論.(3)分兩種情形:①當點P在線段OB上,②當點P在BO的延長線上時,分別利用面積關系,構建方程,可得結論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質,三角形的面積等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題.18.(1)(2,6);(2)(,0)或(9,0);(3)∠OCD+∠DBA=∠BDC或∠OCD-∠DBA=∠BDC【分析】(1)由點的坐標的特點,確定出FC=2,OF=6,得出C(2,6);(2)分點D在線段OA和在OA延長線兩種情況進行計算;(3)分點D在線段OA上時,∠OCD+∠DBA=∠BDC和在OA延長線∠OCD-∠DBA=∠BDC兩種情況進行計算.【詳解】解:(1)如圖,過點C作CF⊥y軸,垂足為F,過B作BE⊥x軸,垂足為E,∵A(6,0),B(8,6),∴FC=AE=8-6=2,OF=BE=6,∴C(2,6);(2)設D(x,0),當△ODC的面積是△ABD的面積的3倍時,若點D在線段OA上,∵OD=3AD,∴×6x=3××6(6-x),∴x=,∴D(,0);若點D在線段OA延長線上,∵OD=3AD,∴×6x=3××6(x-6),∴x=9,∴D(9,0);(3)如圖,過點D作DE∥OC,由平移的性質知OC∥AB.∴OC∥AB∥DE.∴∠OCD=∠CDE,∠EDB=∠DBA.若點D在線段OA上,∠BDC=∠CDE+∠EDB=∠OCD+∠DBA,即∠OCD+∠DBA=∠BDC;若點D在線段OA延長線上,∠BDC=∠CDE-∠EDB=∠OCD-∠DBA,即∠OCD-∠DBA=∠BDC.【點睛】此題是幾何變換綜合題,主要考查了點三角形面積的計算方法,平移的性質,平行線的性質和判定,解本題的關鍵是分點D在線段OA上,和OA延長線上兩種情況.19.快車每秒行米,慢車每秒行米.【分析】設快車每秒行米,慢車每秒行米,根據若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,列出方程組,解方程組即可求得.【詳解】設快車每秒行米,慢車每秒行米,根據題意得,解得答:快車每秒行米,慢車每秒行米.【點睛】本題考查了二元一次方程組的應用,根據題意列出方程組是解題的關鍵.20.(1)A型車、B型車都裝滿貨物一次可以分別運貨3噸、4噸;(2)最省錢的租車方案是方案一:A型車8輛,B型車2輛,最少租車費為2080元.【分析】(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,根據題目中的等量關系:用3輛A型車和2輛B型車載滿貨物一次可運貨17噸;用2輛A型車和3輛B型車載滿貨物一次可運貨l8噸,列方程組求解即可;(2)由題意得出3a+4b=35,然后由a、b為整數(shù)解,得到三中租車方案;(3)根據(2)中的所求方案,利用A型車每輛需租金200元/次,B型車每輛需租金240元/次,分別求出租車費用即可.【詳解】解:(1)設每輛A型車、B型車都裝滿貨物一次可以分別運貨x噸、y噸,依題意列方程組為:解得答:1輛A型車輛裝滿貨物一次可運3噸,1輛B型車裝滿貨物一次可運4噸.(2)結合題意,和(1)可得3a+4b=35∴a=∵a、b都是整數(shù)∴或或答:有3種租車方案:方案一:A型車9輛,B型車2輛;方案二:A型車5輛,B型車5輛;方案三:A型車1輛,B型車8輛.(3)∵A型車每輛需租金200元/次,B型車每輛需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省錢的租車方案是方案一:A型車1輛,B型車8輛,最少租車費為2120元.【點睛】此題主要考查了二元一次方程組以及二元一次方程的解法,關鍵是明確二元一次方程有無數(shù)解,但在解與實際問題有關的二元一次方程組時,要結合未知數(shù)的實際意義求解.21.(1),;(2);(3)【解析】【分析】(1)利用非負數(shù)的性質即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標,進而由△ACD面積求出D點坐標.(3)由平行線間距離相等得到,繼而求出E點坐標,同理求出F點坐標,再由GE=12求出G點坐標,根據求出PG的長即可求P點坐標.【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應用、三角形的面積公式、坐標與圖形的性質、平移的性質,靈活運用分情況討論思想、掌握平移規(guī)律是解題的關鍵.22.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根據兩地間的距離=兩人的速度之和×第一次相遇所需時間,即可得出結論;(2)利用時間=路程÷速度結合2小時后第一次相遇,即可得出結論;(3)設AB兩地的距離為S千米,根據路程=速度×時間,即可得出關于(a+b),S的二元一次方程組(此處將a+b當成一個整體),解之即可得出結論.【詳解】(1)A、B兩地的距離可以表示為2(a+b)千米.故答案為:2(a+b).(2)甲乙相遇時,甲已經走了千米,乙已經走了千米,根據相遇后他們的速度都提高了1千米/小時,得甲還需小時到達B地,乙還需小時到達A地,所以甲從A到B所用的時間為(2+)小時,乙從B到A所用的時間為(2+)小時.故答案為:(2+);(2+).(3)設AB兩地的距離為S千米,3小時36分鐘=小時.依題意,得:,令x=a+b,則原方程變形為,解得:.答:AB兩地的距離為36千米.【點睛】本題考查了列代數(shù)式以及二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.23.(1)10.5;(2)12.5;(3)10.5,12.5,23;;30【分析】(1)畫出圖形,根據三角形的面積公式求解;(2)畫出圖形,利用割補法求解;(3)設S=am+bn+c,其中a,b,c為常數(shù),根據表中數(shù)據列方程組求出a,b,c,然后根據公式即可求出六邊形的面積.【詳解】(1)如圖1,的底為7,高為3,所以面積為,故答案為:10.5;(2)如圖2,,故答案為:12.5;(3)由(1)、(2)可填表格如下:形內格點數(shù)m邊界格點數(shù)n格點多邊形面積S61110.5四邊形81112.5五邊形20823設S=am+bn+c,其中a,b為常數(shù),由題意得,解得,∴皮克公式為,∵六邊形中,m=27,n=8,∴六邊形的面積為=30.【點睛】本題考查了坐標與圖形的性質,三角形的面積,三元一次方程組的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.24.(1)有3種租車方案;(2)租5輛大客車,2輛小客車最省錢;(3)租用大客車2輛,小客車7輛;或租10輛小客車.【分析】(1)設租大客車x輛,根據題意可列出關于x的不等式,求得不等式的解集后,再根據x為整數(shù)即可確定租車方案;(2)依次計算(1)題中的租車方案,比較結果即可得出答案;(3)設租大客車x輛,小客車y輛,根據客車的座位數(shù)滿足的條件可確定x、y滿足的不等式組,進一步可確定x、y滿足的方程,再由帶隊的老師數(shù)可確定x、y滿足的不等式,二者結合即可確定租車方案.【詳解】解:(1)由題意知:本次乘車共270+7=277(人).設租大客車x輛,則小客車(7-x)輛,根據題意,得,解得:,因為x為整數(shù),且x≤7,所以x=5,6,7,即有3種租車方案.(2)方案一:當x=7,所租7輛皆為大客車時,租車費用為:7×400=2800(元),方案二:當x=6,所租6輛為大客車,1輛為小客車時,租車費用為:6×400+300=2700(元),方案三:當x=5,所租5輛為大客車,2輛為小客車時,租車費用為:5×400+300×2=2600(元),所以,租5輛大客車,2輛小客車最省錢.(3)乘車總人數(shù)為270+7+10+4=291(人),因為最后一輛小客車最少20人,則客車空位不能大于10個,所以客車的總座位數(shù)應滿足:291≤座位數(shù)≤301.設租大客車x輛,小客車y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊,∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車方案為:租大客車2輛,小客車7輛;或租10輛小客車.【點睛】本題考查了不等式和不等式組的實際應用、二元一次方程的整數(shù)解等知識,正確理解題意,列出不等式和不等式組是解題的關鍵.25.(1)每副乒乓球拍單價為50元,每個乒乓球的單價為1元;(2)4000元,4320元;(3)3200+20m,3600+18m;(4)若甲商店花錢少,則3200+20m<3600+18m;解得m<200;若乙商店花費少,則3200+20m>3600+18m,解得m>200;若甲商店和乙商店一樣多時,則3200+20m=3600+18m,解得m=200;綜上所述100<m<200時甲商店優(yōu)惠m>200時乙商店優(yōu)惠m=200時兩家商店一樣【分析】(1)設每副乒乓球拍單價為x元,每個乒乓球的單價為y元.根據題意列出二元一次方程組,解答即可;(2)利用(1)中求得的價格即可解答;(3)分別用含m的代數(shù)式表示在甲、乙兩家商店購買所花的費用即可;(4)利用(3)求得的代數(shù)式,進行分類討論即可.【詳解】解:(1)設每副乒乓球拍單價為x元,每個乒乓球的單價為y元.由題意可知解得答:每副乒乓球拍單價為50元,每個乒乓球的單價為1元.(2)甲商店:(元);乙商店:(元)故答案為:4000元;4320元;(3)在甲商店購買的費用為:在乙商店購買的費用為:(4)若甲商店花錢少,則3200+20m<3600+18m解得m<200若乙商店花費少,則3200+20m>3600+18m,解得m>200,若甲商店和乙商店一樣多時,則3200+20m=3600+18m,解得m=200綜上所述100<m<200時甲商店優(yōu)惠m>200時乙商店優(yōu)惠m=200時兩家商店一樣.【點睛】本題考查了二元一次方程組的應用以及方案的選擇,審清題意,列出方程組是解題關鍵.26.(1)1;(2)(3)【分析】(1)根據三角形的面積公式即可求解;(2)根據題意列出不等式組故可求解;(3)分Q點在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當時,=1平方厘米;當時,=平方厘米;故答案為;;(2)解:根據題意,得解得,故的取值范圍為;(3)當Q點在AB上時,依題意可得解得;當Q點在BC上時,依題意可得解得>6,不符合題意;當Q點在AB上時,依題意可得或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論