難點詳解滬科版9年級下冊期末試題含完整答案詳解【名校卷】_第1頁
難點詳解滬科版9年級下冊期末試題含完整答案詳解【名校卷】_第2頁
難點詳解滬科版9年級下冊期末試題含完整答案詳解【名校卷】_第3頁
難點詳解滬科版9年級下冊期末試題含完整答案詳解【名校卷】_第4頁
難點詳解滬科版9年級下冊期末試題含完整答案詳解【名校卷】_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是()A. B.1 C.2 D.2、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.3、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個4、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm5、如圖,將一個棱長為3的正方體表面涂上顏色,把它分割成棱長為1的小正方體,將它們?nèi)糠湃胍粋€不透明盒子中搖勻,隨機取出一個小正方體,有三個面被涂色的概率為()A. B. C. D.6、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.7、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.8、下列判斷正確的個數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個圓是等圓;④弧分優(yōu)弧和劣??;⑤同一條弦所對的兩條弧一定是等?。瓵.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、一個五邊形共有__________條對角線.2、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.3、如圖,過⊙O外一點P,作射線PA,PB分別切⊙O于點A,B,,點C在劣弧AB上,過點C作⊙O的切線分別與PA,PB交于點D,E.則______度.4、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.5、已知中,,,,以為圓心,長度為半徑畫圓,則直線與的位置關(guān)系是__________.6、如圖,AB是半圓O的弦,DE是直徑,過點B的切線BC與⊙O相切于點B,與DE的延長線交于點C,連接BD,若四邊形OABC為平行四邊形,則∠BDC的度數(shù)為______.7、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)三、解答題(7小題,每小題0分,共計0分)1、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點Q,,,求PQ的長度.2、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學(xué)生對新冠疫情防控知識的了解程度,組織七、八年級學(xué)生開展新冠疫情防控知識測試(滿分為10分).學(xué)校學(xué)生處從七、八年級學(xué)生中各隨機抽取了20名學(xué)生的成績進行了統(tǒng)計.下面提供了部分信息.抽取的20名七年級學(xué)生的成績(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學(xué)生成績分析表:年級七年級八年級平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級共有學(xué)生2000人,估計此次測試成績不低于9分的學(xué)生有多少人?(3)在所抽取的七年級與八年級得10分的學(xué)生中,隨機抽取2名學(xué)生在全校學(xué)生大會上進行新冠疫情防控知識宣講,求所抽取的2名學(xué)生恰好是1名七年級學(xué)生和1名八年級學(xué)生的概率.3、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.4、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉(zhuǎn)180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標(biāo)).5、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點B按順時針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點C′位置時,A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點在一條直線上時,請直接寫出此時旋轉(zhuǎn)角α的度數(shù).6、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.7、小明每天騎自行車.上學(xué),都要通過安裝有紅、綠燈的4個十字路口.假設(shè)每個路口紅燈和綠燈亮的時間相同.(1)小明從家到學(xué)校,求通過前2個十字路口時都是綠燈的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)(2)小明從家到學(xué)校,通過這4個十字路口時至少有2個綠燈的概率為.(請直接寫出答案)-參考答案-一、單選題1、A【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.2、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.3、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.4、B【分析】如圖所示,過C作CD⊥AB,交AB于點D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點D,在Rt△ABC中,AC=3cm,BC=4cm,根據(jù)勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點睛】此題考查了切線的性質(zhì),勾股定理,以及三角形面積求法,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.5、B【分析】直接根據(jù)題意得出恰有三個面被涂色的有8個,再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個,恰有三個面被涂色的為棱長為3的正方體頂點處的8個小正方體;故取得的小正方體恰有三個面被涂色.的概率為.故選:B.【點睛】此題主要考查了概率公式的應(yīng)用,正確得出三個面被涂色.小立方體的個數(shù)是解題關(guān)鍵.6、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點旋轉(zhuǎn)后能與自身重合.7、C【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關(guān)鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后重合.8、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.二、填空題1、5【分析】由n邊形的對角線有:條,再把代入計算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關(guān)鍵.2、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.3、65【分析】連接OA,OC,OB,根據(jù)四邊形內(nèi)角和可得,依據(jù)切線的性質(zhì)及角平分線的判定定理可得DO平分,EO平分,再由各角之間的數(shù)量關(guān)系可得,,根據(jù)等量代換可得,代入求解即可.【詳解】解:如圖所示:連接OA,OC,OB,∵PA、PB、DE與圓相切于點A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案為:65.【點睛】題目主要考查圓的切線的性質(zhì),角平分線的判定和性質(zhì),四邊形內(nèi)角和等,理解題意,作出相應(yīng)輔助線,綜合運用這些知識點是解題關(guān)鍵.4、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.5、相切【分析】過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,利用面積得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根據(jù)CD=r=4.8cm,得出直線與的位置關(guān)系是相切.【詳解】解:過點C作CD⊥AB于D,在Rt△ABC中,根據(jù)勾股定理AB=cm,∴S△ABC=CD·AB=AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直線與的位置關(guān)系是相切.故答案為:相切.【點睛】本題考查勾股定理,直角三角形面積,圓的切判定,掌握勾股定理,直角三角形面積,圓的切判定是解題關(guān)鍵.6、【分析】先由切線的性質(zhì)得到∠OBC=90°,再由平行四邊形的性質(zhì)得到BO=BC,則∠BOC=∠BCO=45°,由OD=OB,得到∠ODB=∠OBD,由∠ODB+∠OBD=∠BOC,即可得到∠ODB=∠OBD=22.5°,即∠BDC=22.5°.【詳解】解:∵BC是圓O的切線,∴∠OBC=90°,∵四邊形ABCO是平行四邊形,∴AO=BC,又∵AO=BO,∴BO=BC,∴∠BOC=∠BCO=45°,∵OD=OB,∴∠ODB=∠OBD,∵∠ODB+∠OBD=∠BOC,∴∠ODB=∠OBD=22.5°,即∠BDC=22.5°,故答案為:22.5°.【點睛】本題主要考查了平行四邊形的性質(zhì),切線的性質(zhì),等腰三角形的性質(zhì)與判定,三角形外角的性質(zhì),熟知切線的性質(zhì)是解題的關(guān)鍵.7、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.三、解答題1、(1)見解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點P,點P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進一步計算即可求解.(1)解:如圖中,點P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長度為1.【點睛】本題考查了作圖-應(yīng)用與設(shè)計,垂徑定理,勾股定理,,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.2、(1)(2)(3)【分析】(1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;(2)用總?cè)藬?shù)乘以樣本中七、八年級不低于9分的學(xué)生人數(shù)和所占比例即可得,(3)根據(jù)列表法求概率即可.(1)根據(jù)抽取的20名七年級學(xué)生的成績找到第10個和第11個成績都是8,則中位數(shù)為8,即,根據(jù)條形統(tǒng)計圖可知9分的有6人,人數(shù)最多,則眾數(shù)為9,即(2)解:∵此次測試成績不低于9分的七年級學(xué)生有8人,八年級學(xué)生有9人∴此次測試成績不低于9分的學(xué)生有(人)(3)解:∵七年級得10分的有2人,八年級得10分的有3人設(shè)七年級的2人分別為,八年級的3人分別列表如下,根據(jù)列表可知,共有20種等可能結(jié)果,其中1名七年級學(xué)生和1名八年級學(xué)生的情形有12鐘則所抽取的2名學(xué)生恰好是1名七年級學(xué)生和1名八年級學(xué)生的概率為【點睛】本題考查了求中位數(shù),眾數(shù),根據(jù)樣本估計總體,列表法求概率,掌握以上知識是解題的關(guān)鍵.3、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍”,列表法為:紅1紅2黃藍紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍)紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍)黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍)藍(藍,紅1)(藍,紅2)(藍,黃)(藍,藍)共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.4、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關(guān)于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關(guān)于點C中心對稱的點A'(-1,-3),B關(guān)于點C中心對稱的點B'(1,-1),C關(guān)于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、(1),證明見解析(2)成立,證明見解析(3)【分析】(1)設(shè),先根據(jù)直角三角形的性質(zhì)可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)等邊三角形的判定與性質(zhì)可得,,都是等邊三角形,從而可得,由此即可得出結(jié)論;(2)在上截取,連接,先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,從而可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,,然后根據(jù)三角形的外角性質(zhì)可得,最后根據(jù)等腰三角形的判定可得,由此即可得出結(jié)論;(3)如圖(見解析),先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)直角三角形全等的判定定理證出,然后根據(jù)全等三角形的性質(zhì)可得,最后根據(jù)旋轉(zhuǎn)角即可得.(1)解:,證明如下:設(shè),在中,,,由旋轉(zhuǎn)的性質(zhì)得:,,和都是等邊三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論