難點(diǎn)詳解福建惠安惠南中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)評(píng)試卷(含答案詳解版)_第1頁(yè)
難點(diǎn)詳解福建惠安惠南中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)評(píng)試卷(含答案詳解版)_第2頁(yè)
難點(diǎn)詳解福建惠安惠南中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)評(píng)試卷(含答案詳解版)_第3頁(yè)
難點(diǎn)詳解福建惠安惠南中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)評(píng)試卷(含答案詳解版)_第4頁(yè)
難點(diǎn)詳解福建惠安惠南中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)評(píng)試卷(含答案詳解版)_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

福建惠安惠南中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專(zhuān)題測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測(cè)量所得)又∵133°=70°+63°(計(jì)算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說(shuō)法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理2、如圖,在△ABC與△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB交EF于點(diǎn)D,連接EB.下列結(jié)論:①∠FAC=40°;②AF=AC;③∠EFB=40°;④AD=AC,正確的個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則的面積是()A. B.1 C.5 D.4、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.5、下列長(zhǎng)度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,56、如圖,在中,AD、AE分別是邊BC上的中線與高,,CD的長(zhǎng)為5,則的面積為()A.8 B.10 C.20 D.407、如圖,為估計(jì)池塘岸邊A、B兩點(diǎn)的距離,小方在池塘的一側(cè)選取一點(diǎn)O,OA=15米,OB=10米,A、B間的距離不可能是()A.5米 B.10米 C.15米 D.20米8、小明把一副含有45°,30°角的直角三角板如圖擺放其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠a+∠β等于()A.180° B.210° C.360° D.270°9、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點(diǎn),在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°10、下列條件中,能判定△ABC≌△DEF的是()A.∠A=∠D,∠B=∠E,AC=DF B.∠A=∠E,AB=EF,∠B=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AB=DE,BC=EF,∠A=∠E第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、已知a,b,c是△ABC的三邊,化簡(jiǎn):|a+b-c|+|b-a-c|=________.2、如圖,已知△ABC≌△DEF,∠B=30°,∠F=40°,則∠A的度數(shù)是______.3、如圖,ABDC,ADBC,AC與BD交于點(diǎn)O,EF經(jīng)過(guò)點(diǎn)O,與AD、BC分別交于點(diǎn)E和F,則圖中共有___對(duì)全等三角形.4、如圖,與的頂點(diǎn)A、B、D在同一直線上,,,,延長(zhǎng)分別交、于點(diǎn)F、G.若,,則______.5、如圖,在中,D、E分別為AC、BC邊上一點(diǎn),AE與BD交于點(diǎn)F.已知,,且的面積為60平方厘米,則的面積為_(kāi)_____平方厘米;如果把“”改為“”其余條件不變,則的面積為_(kāi)_____平方厘米(用含n的代數(shù)式表示).6、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.7、如圖,∠C=∠D=90°,AC=AD,請(qǐng)寫(xiě)出一個(gè)正確的結(jié)論________.8、已知三角形的三邊分別為n,5,7,則n的范圍是_____.9、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CA以每秒3個(gè)單位長(zhǎng)度的速度向終點(diǎn)A運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).分別過(guò)P、Q兩點(diǎn)作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時(shí),CQ的長(zhǎng)為_(kāi)_____.10、如圖,在Rt△ABC中,∠C=90°,兩銳角的角平分線交于點(diǎn)P,點(diǎn)E、F分別在邊BC、AC上,且都不與點(diǎn)C重合,若∠EPF=45°,連接EF,當(dāng)AC=6,BC=8,AB=10時(shí),則△CEF的周長(zhǎng)為_(kāi)____.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,在長(zhǎng)方形ABCD中,AB=6cm,BC=8cm.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BC方向以2cm/s的速度向點(diǎn)C勻速運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向以2cm/s的速度向點(diǎn)D勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<3).解答下列問(wèn)題:(1)當(dāng)點(diǎn)C在線段PQ的垂直平分線上時(shí),求t的值;(2)是否存在某一時(shí)刻t,使若存在,求出t的值,并判斷此時(shí)AP和PQ的位置關(guān)系;若不存在,請(qǐng)說(shuō)明理由.2、將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_(kāi)______;(2)直接寫(xiě)出與的數(shù)量關(guān)系:_________;(3)直接寫(xiě)出與的數(shù)量關(guān)系:__________;(4)如圖2,當(dāng)且點(diǎn)E在直線的上方時(shí),將三角尺固定不動(dòng),改變?nèi)浅叩奈恢?,但始終保持兩個(gè)三角尺的頂點(diǎn)C重合,這兩塊三角尺是否存在一組邊互相平行?請(qǐng)直接寫(xiě)出角度所有可能的值___________.3、如圖,在中,點(diǎn)D、E分別在邊AB、AC上,BE與CD交于點(diǎn)F,,,.求和的度數(shù).4、如圖,已知AB=AD,AC=AE,BC=DE,延長(zhǎng)BC分別交邊AD、DE于點(diǎn)F、G.(1)∠B與∠D相等嗎?為什么?(2)若∠CAE=49°,求∠BGD的度數(shù).5、如圖,在每個(gè)小正方形的邊長(zhǎng)均相等的網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.(1)線段CD將△ABC分成面積相等的兩個(gè)三角形,且點(diǎn)D在邊AB上,畫(huà)出線段CD.(2)△CBE≌△CBD,且點(diǎn)E在格點(diǎn)上,畫(huà)出△CBE.6、如圖,AB是⊙O的直徑,CD是⊙O中任意一條弦,求證:AB≥CD.-參考答案-一、單選題1、D【分析】利用測(cè)量的方法只能是驗(yàn)證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:證法一只是利用特殊值驗(yàn)證三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測(cè)量夠100個(gè)三角形進(jìn)行驗(yàn)證,也只是驗(yàn)證,不能證明該定理,故B不符合題意;故選D【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)的驗(yàn)證與證明,理解驗(yàn)證與證明的含義及證明的方法是解本題的關(guān)鍵.2、C【分析】由“SAS”可證△ABC≌△AEF,由全等三角形的性質(zhì)依次判斷可求解.【詳解】解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AF=AC,∠EAF=∠BAC,∠AFE=∠C,故②正確,∴∠BAE=∠FAC=40°,故①正確,∵∠AFB=∠C+∠FAC=∠AFE+∠EFB,∴∠EFB=∠FAC=40°,故③正確,無(wú)法證明AD=AC,故④錯(cuò)誤,故選:C.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.3、B【分析】根據(jù)三角形面積公式由點(diǎn)為的中點(diǎn)得到,同理得到,則,然后再由點(diǎn)為的中點(diǎn)得到.【詳解】解:點(diǎn)為的中點(diǎn),,點(diǎn)為的中點(diǎn),,,點(diǎn)為的中點(diǎn),.故選:.【點(diǎn)睛】本題考查了三角形的中線與面積的關(guān)系,解題的關(guān)鍵是掌握是三角形的中線把三角形的面積平均分成兩半.4、D【分析】已知條件AB=AC,還有公共角∠A,然后再結(jié)合選項(xiàng)所給條件和全等三角形的判定定理進(jìn)行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關(guān)鍵.5、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.6、C【分析】根據(jù)三角形中線的性質(zhì)得出CB的長(zhǎng)為10,再用三角形面積公式計(jì)算即可.【詳解】解:∵AD是邊BC上的中線,CD的長(zhǎng)為5,∴CB=2CD=10,的面積為,故選:C.【點(diǎn)睛】本題考查了三角形中線的性質(zhì)和面積公式,解題關(guān)鍵是明確中線的性質(zhì)求出底邊長(zhǎng).7、A【分析】根據(jù)三角形的三邊關(guān)系得出5<AB<25,根據(jù)AB的范圍判斷即可.【詳解】解:連接AB,根據(jù)三角形的三邊關(guān)系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B間的距離在5和25之間,∴A、B間的距離不可能是5米;故選:A.【點(diǎn)睛】本題主要考查對(duì)三角形的三邊關(guān)系定理的理解和掌握,能正確運(yùn)用三角形的三邊關(guān)系定理是解此題的關(guān)鍵.8、B【分析】已知,得到,根據(jù)外角性質(zhì),得到,,再將兩式相加,等量代換,即可得解;【詳解】解:如圖所示,∵,∴,∵,,∴,∵,,∴,∵,,∴;故選D.【點(diǎn)睛】本題主要考查了三角形外角定理的應(yīng)用,準(zhǔn)確分析計(jì)算是解題的關(guān)鍵.9、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.10、A【分析】根據(jù)全等三角形的判定方法,對(duì)各選項(xiàng)分別判斷即可得解.【詳解】解:A、∠A=∠D,∠B=∠E,AC=DF,根據(jù)AAS可以判定,故此選項(xiàng)符合題意;B、∠A=∠E,AB=EF,∠B=∠D,AB與EF不是對(duì)應(yīng)邊,不能判定,故此選項(xiàng)不符合題意;C、∠A=∠D,∠B=∠E,∠C=∠F,沒(méi)有邊對(duì)應(yīng)相等,不可以判定,故此選項(xiàng)不符合題意;D、AB=DE,BC=EF,∠A=∠E,有兩邊對(duì)應(yīng)相等,一對(duì)角不是對(duì)應(yīng)角,不可以判定,故此選項(xiàng)不符合題意;故選A.【點(diǎn)睛】本題考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.二、填空題1、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對(duì)值的法則進(jìn)行化簡(jiǎn)即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點(diǎn)睛】熟悉三角形的三邊關(guān)系和求絕對(duì)值的法則,是解題的關(guān)鍵,注意,去絕對(duì)值后,要先添加括號(hào),再去括號(hào),這樣不容易出錯(cuò).|a+b-c|+|b-a-c|2、110°【分析】先根據(jù)全等三角形的性質(zhì)得到∠C=∠F=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù).【詳解】解:∵△ABC≌△DEF,∴∠C=∠F=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣30°=110°.故答案為:110°.【點(diǎn)睛】本題考查了全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等.3、6【分析】根據(jù)平行線的性質(zhì)得出∠DAC=∠BCA,∠DCA=∠BAC,根據(jù)全等三角形的判定定理ASA可以推出△ABC≌△CDA,△ABD≌△CDB,根據(jù)全等三角形的性質(zhì)得出AD=CB,AB=CD根據(jù)全等三角形的判定定理AAS推出△AOB≌△COD,△AOD≌△COB,根據(jù)全等三角形的性質(zhì)定理得出AO=CO,BO=DO,根據(jù)全等三角形的判定定理ASA推出△AOE≌△COF,△DOE≌△BOF即可.【詳解】解:∵ABDC,ADBC,∴∠DAC=∠BCA,∠DCA=∠BAC,在△ABC和△CDA中,∴△ABC≌△CDA(ASA),∴AD=CB,AB=CD,同理△ABD≌△CDB,在△AOB和△COD中,∴△AOB≌△COD(AAS),同理△AOD≌△COB,∴AO=CO,BO=DO,在△AOE和△COF中,∴△AOE≌△COF同理△DOE≌△BOF.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,平行線的性質(zhì)等知識(shí)點(diǎn),能熟記全等三角形的判定定理和性質(zhì)定理是解此題的關(guān)鍵,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS兩直角三角形全等還有HL等,②全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.4、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點(diǎn)睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個(gè)內(nèi)角和是解答本題的關(guān)鍵.5、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當(dāng)BE=nCE時(shí),運(yùn)用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當(dāng)BE=nCE時(shí),S△AEC=,設(shè)S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點(diǎn)睛】本題主要考查了三角形的面積的計(jì)算,解決問(wèn)題的關(guān)鍵是作輔助線,根據(jù)三角形之間的面積關(guān)系得出結(jié)論.解題時(shí)注意:三角形的中線將三角形分成面積相等的兩部分.6、5【分析】利用三角形的中線把三角形分成面積相等的兩個(gè)三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個(gè)三角形的性質(zhì)求解是解題的關(guān)鍵.7、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點(diǎn)睛】此題考查全等三角形的判定和性質(zhì),關(guān)鍵是根據(jù)HL證明△ACB和△ADB全等解答.8、2<n<12【分析】根據(jù)在三角形中任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,即可求第三邊長(zhǎng)的范圍.【詳解】解:由三角形三邊關(guān)系定理得:7﹣5<n<7+5,即2<n<12故n的范圍是2<n<12.故答案為:2<n<12.【點(diǎn)睛】本題考查的是三角形三邊關(guān)系,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.9、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時(shí);(2)當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí);【詳解】解:當(dāng)P在AC上,Q在BC上時(shí),∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時(shí)是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí),則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時(shí),滿足條件的CQ的長(zhǎng)為7或3.5,故答案為:7或3.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.10、4【分析】根據(jù)題意過(guò)點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ,進(jìn)而利用全等三角形的性質(zhì)證明EF=EM+EN,即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一點(diǎn)J,使得MJ=FN,連接PJ.∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,∴PM=PK,PK=PN,∴PM=PN,∵∠C=∠PMC=∠PNC=90°,∴四邊形PMCN是矩形,∴四邊形PMCN是正方形,∴CM=PM,∴∠MPN=90°,在△PMJ和△PNF中,,∴△PMJ≌△PNF(SAS),∴∠MPJ=∠FPN,PJ=PF,∴∠JPF=∠MPN=90°,∵∠EPF=45°,∴∠EPF=∠EPJ=45°,在△PEF和△PEJ中,,∴△PEF≌△PEJ(SAS),∴EF=EJ,∴EF=EM+FN,∴△CEF的周長(zhǎng)=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,∵S△ABC=?BC?AC=(AC+BC+AB)?PM,∴PM=2,∴△ECF的周長(zhǎng)為4,故答案為:4.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,正方形的判定,全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn).三、解答題1、(1)的值為2.(2)存在,的值為1,.【分析】(1)當(dāng)點(diǎn)C在線段PQ的垂直平分線上時(shí),利用垂直平分線的性質(zhì),得到,之后列出關(guān)于t的方程,求出t的值即可.(2)當(dāng)時(shí),根據(jù)對(duì)應(yīng)邊,列出關(guān)于t的方程,求出t的值,之后利用全等三角形的性質(zhì),得到對(duì)應(yīng)角相等,最后證得.【詳解】(1)解:由題意可知:,,點(diǎn)C在線段PQ的垂直平分線上,,故有:,解得:的值為2.(2)解:,,,即.四邊形ABCD是長(zhǎng)方形,.在中,且,,.【點(diǎn)睛】本題主要是考查了垂直平分線和全等三角形的性質(zhì),熟練應(yīng)用相關(guān)性質(zhì)找到對(duì)應(yīng)邊相等,求出時(shí)間t,是解決本題的關(guān)鍵,另外,關(guān)于線段關(guān)系,一般以垂直關(guān)系為多.2、(1);(2);(3);(4)存在一組邊互相平行;或或或或.【分析】(1)根據(jù)垂直的性質(zhì)結(jié)合圖形求解即可;(2)根據(jù)垂直的性質(zhì)及各角之間的關(guān)系即可得出;(3)由(2)可得,根據(jù)圖中角度關(guān)系可得,將其代入即可得;(4)根據(jù)題意,分五種情況進(jìn)行分類(lèi)討論:①當(dāng)時(shí);②當(dāng)時(shí);③當(dāng)時(shí);④當(dāng)時(shí);⑤當(dāng)時(shí);分別利用

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論