版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、下列事件是確定事件的是()A.方程有實(shí)數(shù)根 B.買一張?bào)w育彩票中大獎(jiǎng)C.拋擲一枚硬幣正面朝上 D.上海明天下雨2、的邊經(jīng)過圓心,與圓相切于點(diǎn),若,則的大小等于()A. B. C. D.3、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.104、一個(gè)黑色布袋中裝有3個(gè)紅球和2個(gè)白球,這些球除顏色外其它都相同,從袋子中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率是()A. B. C. D.5、如圖,ABCD是正方形,△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形6、已知⊙O的半徑為4,,則點(diǎn)A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定7、已知菱形ABCD的對(duì)角線交于原點(diǎn)O,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,則點(diǎn)D的坐標(biāo)是()A. B. C. D.8、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、如圖,把分成相等的六段弧,依次連接各分點(diǎn)得到正六邊形ABCDEF,如果的周長(zhǎng)為,那么該正六邊形的邊長(zhǎng)是______.2、數(shù)學(xué)興趣活動(dòng)課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點(diǎn)P在BC邊所在的直線l上移動(dòng),小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點(diǎn)D是CB邊上的動(dòng)點(diǎn),連接AD,將線段AD順時(shí)針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.3、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.4、如圖,在⊙O中,A,B,C是⊙O上三點(diǎn),如果∠AOB=70o,那么∠C的度數(shù)為_______.5、如圖,將矩形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形的位置,旋轉(zhuǎn)角為.若,則的大小為________(度).6、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進(jìn)行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)7、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長(zhǎng)度為,則∠BAC=________度.三、解答題(7小題,每小題0分,共計(jì)0分)1、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點(diǎn)D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長(zhǎng);(2)如圖2,若點(diǎn)D與C重合,EF與BC交于點(diǎn)M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點(diǎn)D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時(shí),直接出的值.2、如圖,是由一些大小相同的小正方體組合成的簡(jiǎn)單幾同體,請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出從它的左面和上面看到的形狀圖.3、已知線段AB,用平移、旋轉(zhuǎn)、軸對(duì)稱畫出一個(gè)以AB為一邊,一個(gè)內(nèi)角是30°的菱形.(不寫畫法,保留作圖痕跡).4、一個(gè)不透明的口袋中有四個(gè)分別標(biāo)號(hào)為1,2,3,4的完全相同的小球,從中隨機(jī)摸取兩個(gè)小球.(1)請(qǐng)列舉出所有可能結(jié)果;(2)求取出的兩個(gè)小球標(biāo)號(hào)和等于5的概率.5、解題與遐想.如圖,Rt△ABC的內(nèi)切圓與斜邊AB相切于點(diǎn)D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實(shí)非常神奇了…數(shù)學(xué)劉老師:大家想一想,既然結(jié)果如此簡(jiǎn)單到極致,不計(jì)算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個(gè)東西,這個(gè)圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計(jì)算驗(yàn)證(1)通過計(jì)算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請(qǐng)?jiān)趫D中畫出拼圖后的4個(gè)直角三角形甲、乙、丙、丁的位置,作必要標(biāo)注并簡(jiǎn)要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點(diǎn)D在線段AB上,以AB為斜邊求作一個(gè)Rt△ABC,使它的內(nèi)切圓與斜邊AB相切于點(diǎn)D.(保留作圖的痕跡,寫出必要的文字說明)6、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長(zhǎng)和邊心距.7、如圖,以四邊形的對(duì)角線為直徑作圓,圓心為,點(diǎn)、在上,過點(diǎn)作的延長(zhǎng)線于點(diǎn),已知平分.(1)求證:是切線;(2)若,,求的半徑和的長(zhǎng).-參考答案-一、單選題1、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對(duì)各個(gè)選項(xiàng)逐個(gè)分析,即可得到答案【詳解】解:.方程無實(shí)數(shù)根,因此“方程有實(shí)數(shù)”是不可能事件,所以選項(xiàng)符合題意;B.買一張?bào)w育彩票可能中大獎(jiǎng),有可能不中,因此是隨機(jī)事件,所以選項(xiàng)B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項(xiàng)C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項(xiàng)D不符合題意;故選:.【點(diǎn)睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.2、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計(jì)算,得到答案.【詳解】解:連接,,,與圓相切于點(diǎn),,,故選:A.【點(diǎn)睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.3、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.4、D【分析】根據(jù)隨機(jī)事件概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A),進(jìn)行計(jì)算即可.【詳解】解:∵一個(gè)黑色布袋中裝有3個(gè)紅球和2個(gè)白球,這些球除顏色外其它都相同,∴抽到每個(gè)球的可能性相同,∴布袋中任意摸出1個(gè)球,共有5種可能,摸到白球可能的次數(shù)為2次,摸到白球的概率是,∴P(白球).故選:D.【點(diǎn)睛】本題考查了隨機(jī)事件概率的求法,熟練掌握隨機(jī)事件概率公式是解題關(guān)鍵.5、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握?qǐng)D形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.6、C【分析】根據(jù)⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點(diǎn)A到圓心O的距離d=5,∴d>r,∴點(diǎn)A在⊙O外,故選:C.【點(diǎn)睛】本題主要考查點(diǎn)與圓的位置關(guān)系,點(diǎn)與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:①點(diǎn)P在圓外?d>r;②點(diǎn)P在圓上?d=r;③點(diǎn)P在圓內(nèi)?d<r.7、A【分析】根據(jù)菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,則點(diǎn)與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,根據(jù)中心對(duì)稱的點(diǎn)的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,∴與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)是故選A【點(diǎn)睛】本題考查了菱形的性質(zhì),求關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.8、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形中對(duì)角互補(bǔ).解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.二、填空題1、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長(zhǎng)為,∴的半徑為,正六邊形的邊長(zhǎng)是6;【點(diǎn)睛】本題考查正多邊形與圓的關(guān)系、等邊三角形的判定和性質(zhì)等知識(shí),明確正六邊形的邊長(zhǎng)和半徑相等是解題的關(guān)鍵.2、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時(shí),KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時(shí),PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點(diǎn)K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時(shí),KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題.3、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.4、35°【分析】利用圓周角定理求出所求角度數(shù)即可.【詳解】解:與都對(duì),且,,故答案為:.【點(diǎn)睛】本題考查了圓周角定理,解題的關(guān)鍵是熟練掌握?qǐng)A周角定理.5、20【分析】先利用旋轉(zhuǎn)的性質(zhì)得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內(nèi)角和計(jì)算出∠BAD‘=70°,然后利用互余計(jì)算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.6、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點(diǎn)睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點(diǎn)向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.7、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點(diǎn)睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問題.三、解答題1、(1);(2)證明見詳解;(3).【分析】(1)過點(diǎn)P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點(diǎn)A、M、C、E四點(diǎn)共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點(diǎn)共線,根據(jù)兩點(diǎn)之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點(diǎn)P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點(diǎn)A、M、C、E四點(diǎn)共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時(shí),與BE在△ABC外部時(shí),當(dāng)當(dāng)BE在∠ABC的平分線上時(shí),作∠ABC的平分線交AC于O,將△AEC逆時(shí)針旋轉(zhuǎn)90°得到△AFC′,過點(diǎn)O作OP⊥BC于P,則點(diǎn)E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+C′F≥BC′,當(dāng)點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,此時(shí)點(diǎn)E在AC上與點(diǎn)O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當(dāng)BE在△ABC外部時(shí),∠EBA=,將△EAC逆時(shí)針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點(diǎn)共線,∴BF+CE=BF+FC′≥BC′,∴點(diǎn)F在BC′上時(shí),BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點(diǎn)睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點(diǎn)共圓,同弧所對(duì)圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識(shí)多,是中考?jí)狠S題,利用輔助線作出正確圖形是解題關(guān)鍵.2、圖見解析.【分析】根據(jù)左視圖和俯視圖的畫法即可得.【詳解】解:畫圖如下:【點(diǎn)睛】本題考查了左視圖和俯視圖,熟練掌握左視圖(是指從左面觀察物體所得到的圖形)和俯視圖(是指從上面觀察物體所得到的圖形)的畫法是解題關(guān)鍵.3、見解析【分析】把線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到線段AD,作直線BD,以直線BD為對(duì)稱軸,分別作AB、AD的軸對(duì)稱圖形,即可得到所求的菱形ABCD.【詳解】解:如圖所示:菱形ABCD即為所求.【點(diǎn)睛】本題主要考查了菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、軸對(duì)稱的性質(zhì)等知識(shí)點(diǎn),理解菱形的性質(zhì)是解答本題的關(guān)鍵.4、(1)見詳解;(2).【分析】(1)根據(jù)題意通過列出相應(yīng)的表格,即可得出所有可能結(jié)果;(2)由題意利用取出的兩個(gè)小球標(biāo)號(hào)和等于5的結(jié)果數(shù)除以所有可能結(jié)果數(shù)即可得出答案.【詳解】解:(1)由題意列表得:12341---(2,1)(3,1)(4,1)2(1,2)---(3,2)(4,2)3(1,3)(2,3)---(4,3)4(1,4)(2,4)(3,4)---所有可能的結(jié)果有12種;(2)由(1)表格可知取出的兩個(gè)小球標(biāo)號(hào)和等于5的結(jié)果有(1,4)、(2,3)、(3,2)、(4,1)共4種,而所有可能的結(jié)果有12種,所以取出的兩個(gè)小球標(biāo)號(hào)和等于5的概率.【點(diǎn)睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.5、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設(shè)⊙O的半徑為r,由切線長(zhǎng)定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進(jìn)而求得結(jié)果;(2)根據(jù)切線長(zhǎng)定理可證明甲和乙兩個(gè)三角形全等,丙丁兩個(gè)三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以O(shè)P為邊放在右側(cè),圍成矩形的邊長(zhǎng)是4和5;(3)可先計(jì)算∠AFB=135°,根據(jù)“定弦對(duì)定角”作F點(diǎn)的軌跡,根據(jù)切線性質(zhì),過點(diǎn)F作AB的垂線,再根據(jù)直徑所對(duì)的圓周角是90°,確定點(diǎn)C.【詳解】解:(1)如圖1,設(shè)⊙O的半徑為r,連接OE,OF,∵⊙O內(nèi)切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設(shè)△ABC的內(nèi)切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,F(xiàn)D⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GAT 1481.2-2018北斗全球衛(wèi)星導(dǎo)航系統(tǒng)公安應(yīng)用 第2部分:終端定位技術(shù)要求》專題研究報(bào)告
- 養(yǎng)老院服務(wù)質(zhì)量監(jiān)督與投訴處理制度
- 企業(yè)員工培訓(xùn)與技能發(fā)展路徑制度
- 企業(yè)內(nèi)部保密協(xié)議簽訂制度
- 養(yǎng)雞除草技術(shù)培訓(xùn)課件
- 2026湖南岳陽汨羅市第三人民醫(yī)院面向社會(huì)招聘編外勞務(wù)派遣制專業(yè)技術(shù)人員7人參考題庫(kù)附答案
- 2026湖南長(zhǎng)沙市森林公安局招聘普通雇員1人參考題庫(kù)附答案
- 2026福建省面向重慶大學(xué)選調(diào)生選拔工作備考題庫(kù)附答案
- 2026西北工業(yè)大學(xué)動(dòng)力與能源學(xué)院葉輪機(jī)氣熱彈研究所招聘1人(陜西)參考題庫(kù)附答案
- 公共交通線路審批管理制度
- 汽機(jī)專業(yè)安全培訓(xùn)課件
- 鋼結(jié)構(gòu)工程全面質(zhì)量通病圖冊(cè)
- 宮頸TCT診斷課件
- 2026高考藍(lán)皮書高考關(guān)鍵能力培養(yǎng)與應(yīng)用1.批判性與創(chuàng)造性思維能力的基礎(chǔ)知識(shí)
- 多學(xué)科團(tuán)隊(duì)(MDT)中的醫(yī)患溝通協(xié)同策略
- 期末復(fù)習(xí)知識(shí)點(diǎn)清單新教材統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- 賬務(wù)清理合同(標(biāo)準(zhǔn)版)
- 投標(biāo)委托造價(jià)協(xié)議書
- 孕婦上班免責(zé)協(xié)議書
- 神經(jīng)內(nèi)科腦疝術(shù)后護(hù)理手冊(cè)
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案
評(píng)論
0/150
提交評(píng)論