版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖所示,公路AC、BC互相垂直,點(diǎn)M為公路AB的中點(diǎn),為測(cè)量湖泊兩側(cè)C、M兩點(diǎn)間的距離,若測(cè)得AB的長(zhǎng)為6km,則M、C兩點(diǎn)間的距離為()A.2.5km B.4.5km C.5km D.3km2、在△ABC中,AD是角平分線,點(diǎn)E、F分別是線段AC、CD的中點(diǎn),若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.3、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說(shuō)法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是4、在菱形ABCD中,兩條對(duì)角線AC=10,BD=24,則此菱形的邊長(zhǎng)為()A.14 B.25 C.26 D.135、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,DF的最小值是()A.1 B.1.5 C.2 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,菱形ABCD的兩條對(duì)角線長(zhǎng)分別為AC=6,BD=8,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),則AP的最小值為_(kāi)_.2、如圖,在矩形紙片ABCD中,AB=6,BC=4,點(diǎn)E是AD的中點(diǎn),點(diǎn)F是AB上一動(dòng)點(diǎn)將AEF沿直線EF折疊,點(diǎn)A落在點(diǎn)A′處在EF上任取一點(diǎn)G,連接GC,,,則的周長(zhǎng)的最小值為_(kāi)_______.3、已知如圖,點(diǎn)E,F(xiàn)分別在正方形的邊,上,,若,,則_________.4、如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長(zhǎng)為_(kāi)_________.5、如圖,在中,,點(diǎn)、、分別是三邊的中點(diǎn),且,則的長(zhǎng)度是__________.三、解答題(5小題,每小題10分,共計(jì)50分)1、(3)點(diǎn)P為AC上一動(dòng)點(diǎn),則PE+PF最小值為.2、如圖1,在平面直角坐標(biāo)系中,且;(1)試說(shuō)明是等腰三角形;(2)已知.寫出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.3、已知:?ABCD的對(duì)角線AC,BD相交于O,M是AO的中點(diǎn),N是CO的中點(diǎn),求證:BM∥DN,BM=DN.
4、已知如圖,在中,點(diǎn)是邊上一點(diǎn),連接,點(diǎn)是上一動(dòng)點(diǎn),連接.(1)如圖1,當(dāng)時(shí),連接,延長(zhǎng)交于點(diǎn),求證:;(2)如圖2,以為直角邊作等腰,連接,若,當(dāng)點(diǎn)在運(yùn)動(dòng)過(guò)程中,求周長(zhǎng)的最小值.
5、如圖,∠ACB=90°,CD⊥AB于點(diǎn)D,AF平分∠CAB交CD于點(diǎn)E,交BC于點(diǎn)F,作EG∥AB交CB于點(diǎn)G.(1)求證:△CEF是等腰三角形;(2)求證:CF=BG;(3)若F是CG的中點(diǎn),EF=1,求AB的長(zhǎng).-參考答案-一、單選題1、D【解析】【詳解】根據(jù)直角三角形斜邊上的中線性質(zhì)得出CM=AB,即可求出CM.【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M(jìn)為AB的中點(diǎn),∴CM=AB,∵AB=6km,∴CM=3km,即M,C兩點(diǎn)間的距離為3km,故選:D.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),解題關(guān)鍵是掌握直角三角形斜邊上的中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.2、B【解析】【分析】過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,可求出,,再由點(diǎn)E、F分別是線段AC、CD的中點(diǎn),可得出,進(jìn)而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,∴,∴,,∵點(diǎn)E、F分別是線段AC、CD的中點(diǎn),∴,∴,∵,∴,∴,過(guò)點(diǎn)D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點(diǎn)睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關(guān)鍵是求出.3、D【解析】【分析】如圖(見(jiàn)解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒(méi)有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.4、D【解析】【分析】由菱形的性質(zhì)和勾股定理即可求得AB的長(zhǎng).【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí),熟練掌握菱形的性質(zhì),由勾股定理求出AB=13是解題的關(guān)鍵.5、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.二、填空題1、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時(shí),AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長(zhǎng),由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點(diǎn)為O,∵點(diǎn)P是BC邊上的一動(dòng)點(diǎn),∴AP⊥BC時(shí),AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點(diǎn)睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時(shí),AP有最小值是本題關(guān)鍵.2、【解析】【分析】連接AC交EF于G,連接A′G,此時(shí)△CGA′的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,求出CA′的最小值即可解決問(wèn)題.【詳解】解:如圖,連接AC交EF于G,連接A′G,連接EC,由折疊的性質(zhì)可知A′G=GA,此時(shí)△A′GC的周長(zhǎng)最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四邊形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周長(zhǎng)的最小值+CA′,當(dāng)CA′最小時(shí),△CGA′的周長(zhǎng)最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值為2-2,∴△CGA′的周長(zhǎng)的最小值為2-2,故答案為:.【點(diǎn)睛】本題考查翻折變換,矩形的性質(zhì),勾股定理,最短路徑問(wèn)題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考填空題中的壓軸題.3、14【解析】【分析】過(guò)點(diǎn)作的垂線,交延長(zhǎng)線于點(diǎn),先根據(jù)正方形的性質(zhì)、三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)即可得出答案.【詳解】解:如圖,過(guò)點(diǎn)作的垂線,交延長(zhǎng)線于點(diǎn),四邊形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案為:14.【點(diǎn)睛】本題考查了正方形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造全等三角形是解題關(guān)鍵.4、##【解析】【分析】由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長(zhǎng),再利用勾股定理求出BF的長(zhǎng),最后在Rt△ABF中利用面積法可求出AH的長(zhǎng),可進(jìn)一步求出AG的長(zhǎng),GE的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長(zhǎng)度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對(duì)稱的性質(zhì).5、【解析】【分析】根據(jù)中位線定理可得的長(zhǎng)度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長(zhǎng)度.【詳解】解:∵點(diǎn)、、分別是三邊的中點(diǎn),且∴∵∴故答案為:【點(diǎn)睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.三、解答題1、【分析】(1)根據(jù)折疊的性質(zhì)可得:∠1=∠2,再由矩形的性質(zhì),可得∠2=∠3,從而得到∠1=∠3,即可求解;(2)設(shè)FD=x,則AF=CF=8-x,再由勾股定理,可得DF=3,從而得到CF=5,即可求解;(3)連接PB,根據(jù)折疊的性質(zhì)可得△ECP≌△BCP,從而得到PE=PB,進(jìn)而得到當(dāng)點(diǎn)F、P、B三點(diǎn)共線時(shí),PE+PF最小,最小值為BF的長(zhǎng),再由勾股定理,即可求解.【詳解】(1)解:△ACF是等腰三角形,理由如下:如圖,由折疊可知,∠1=∠2,∵四邊形ABCD是矩形,∴AB∥CD,∴∠2=∠3,∴∠1=∠3,∴AF=CF,∴△ACF是等腰三角形;(2)∵四邊形ABCD是矩形且AB=8,BC=4,∴AD=BC=4,CD=AB=8,∠D=90°,設(shè)FD=x,則AF=CF=8-x,在Rt△AFD中,根據(jù)勾股定理得AD2+DF2=AF2,∴42+x2=(8-x)2,解得x=3,即DF=3,∴CF=8-3=5,∴;(3)如圖,連接PB,根據(jù)折疊得:CE=CB,∠ECP=∠BCP,∵CP=CP,∴△ECP≌△BCP,∴PE=PB,∴PE+PF=PE+PB,∴當(dāng)點(diǎn)F、P、B三點(diǎn)共線時(shí),PE+PF最小,最小值為BF的長(zhǎng),由(2)知:CF=5,∵BC=4,∠BCF=90°,∴,即PE+PF最小值為.【點(diǎn)睛】本題主要考查了矩形與折疊問(wèn)題,等腰三角形的判定,熟練掌握矩形和折疊的性質(zhì)是解題的關(guān)鍵.2、(1)見(jiàn)解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.
【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長(zhǎng),即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時(shí),;當(dāng)時(shí),;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點(diǎn)坐標(biāo)為(12,0),B點(diǎn)坐標(biāo)為(-8,0),C點(diǎn)坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時(shí),∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)N∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點(diǎn),∵,∴,∴,∴點(diǎn)M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時(shí),同理可得,∴,∴M點(diǎn)的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;
②如圖3-3所示,當(dāng)OM=OE時(shí),∵E是AC的中點(diǎn),∠AOC=90°,,∴,∴此時(shí)M的坐標(biāo)為(0,10);如圖3-4所示,當(dāng)時(shí),∴此時(shí)M點(diǎn)與A點(diǎn)重合,∴M點(diǎn)的坐標(biāo)為(12,0);如圖3-5所示,當(dāng)OM=ME時(shí),過(guò)點(diǎn)E作EF⊥x軸于F,∵OE=AE,EF⊥OA,∴,∴,設(shè),則,∵,∴,解得,∴M點(diǎn)的坐標(biāo)為(,0);綜上所述,當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,勾股定理,等腰三角形的性質(zhì)與判定,直角三角形斜邊上的直線,三角形面積等等,解題的關(guān)鍵在于能夠利用數(shù)形結(jié)合和分類討論的思想求解.3、見(jiàn)解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點(diǎn),N是CO的中點(diǎn),進(jìn)而可得MO=ON,進(jìn)而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,
∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M(jìn)為AO的中點(diǎn),N為CO的中點(diǎn),即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.4、(1)證明見(jiàn)解析;(2)【分析】(1)通過(guò)證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長(zhǎng)CE到點(diǎn)P,使EP=CE,先證明點(diǎn)G在過(guò)點(diǎn)P且與CE垂直的直線PN上運(yùn)動(dòng),再作點(diǎn)E關(guān)于點(diǎn)P的對(duì)稱點(diǎn)Q,連接BQ交PN于點(diǎn)G,此時(shí)△BEG的周長(zhǎng)最小,求出此時(shí)GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如圖,作BN⊥BE,GN⊥BN于點(diǎn)N,延長(zhǎng)NG交射線CE于點(diǎn)P,
則∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG≌△BEF(AAS),∴BN=BE;∵∠EBN=∠N=∠BEP=90°,∴四邊形BEPN是正方形,∴PE=BE=CE,∴當(dāng)點(diǎn)F在CE上運(yùn)動(dòng)時(shí),點(diǎn)G在PN上運(yùn)動(dòng);延長(zhǎng)EP到點(diǎn)Q,使PQ=PE,連接BQ交PN于點(diǎn)G,∵PN垂直平分EQ,∴點(diǎn)Q與點(diǎn)E關(guān)于直線PN對(duì)稱,∵兩點(diǎn)之間,線段最短,∴此時(shí)GE+GB=GQ+GB=BQ最小,∵BE為定值,∴此時(shí)GE+GB+BE最小,即△BEG的周長(zhǎng)最?。蛔鱀H⊥CE于點(diǎn)H,則∠DHE=∠DHC=90°,∵∠ECB=∠EBC=45°,∴∠HED=∠ECB=45°,∴∠HDE=45°=∠HED,∴DH=EH,∴DH2+EH2=2DH2=DE2=,∴DH=EH=1;∴CH=,∴BE=CE=EH+CH=1+2=3,∴EQ=2PE=2BE=6,∵∠BEQ=90°,∴BQ=,∴GE+GB+BE=,∴△BEG周長(zhǎng)的最小值為.【點(diǎn)睛】本題重點(diǎn)考查平行四邊形的性質(zhì)、正方形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣西賀州市富川瑤族自治縣自然資源局招聘2人模擬筆試試題及答案解析
- 2026昆玉職業(yè)技術(shù)學(xué)院引進(jìn)高層次人才(28人)參考考試試題及答案解析
- 2025漳州城投地產(chǎn)集團(tuán)有限公司市場(chǎng)化用工人員招聘模擬筆試試題及答案解析
- 深度解析(2026)《GBT 26492.3-2011變形鋁及鋁合金鑄錠及加工產(chǎn)品缺陷 第3部分:板、帶缺陷》
- 深度解析(2026)《GBT 26056-2010真空熱壓鈹材》(2026年)深度解析
- 2026年寧波鎮(zhèn)海中學(xué)嵊州分校招聘事業(yè)編制教師2人考試備考題庫(kù)及答案解析
- 深度解析(2026)《GBT 25749.1-2010機(jī)械安全 空氣傳播的有害物質(zhì)排放的評(píng)估 第1部分:試驗(yàn)方法的選擇》(2026年)深度解析
- 2025泰安新泰市泰山電力學(xué)校教師招聘參考筆試題庫(kù)附答案解析
- 2025山東鋁業(yè)有限公司面向中鋁股份內(nèi)部招聘考試備考題庫(kù)及答案解析
- 2026福建三明市建寧縣公開(kāi)招聘緊缺急需專業(yè)教師19人備考考試試題及答案解析
- 藥品生產(chǎn)企業(yè)銷售模式、組織架構(gòu)及崗位設(shè)置-藥品生產(chǎn)企業(yè)銷售部門組
- 鄉(xiāng)村振興背景下農(nóng)村集體經(jīng)濟(jì)發(fā)展問(wèn)題
- 頜下腺腫物的護(hù)理
- 小型水工建筑物設(shè)計(jì)基本知識(shí)-水工建筑物的安全加高
- 新視野大學(xué)英語(yǔ)(第四版)讀寫教程1(思政智慧版) 課件 Unit 4 Social media matters Section A
- 燃?xì)鈭?bào)警施工方案
- 保安員基本條件及行為規(guī)范
- 家裝設(shè)計(jì)的職責(zé)【部門職能】1、接待裝-112702874
- 艾堅(jiān)蒙(安慶)科技發(fā)展有限公司年產(chǎn)4000噸光固化引發(fā)劑系列產(chǎn)品項(xiàng)目環(huán)境影響報(bào)告書
- GB/T 23794-2023企業(yè)信用評(píng)價(jià)指標(biāo)
- GB/T 4457.2-2003技術(shù)制圖圖樣畫法指引線和基準(zhǔn)線的基本規(guī)定
評(píng)論
0/150
提交評(píng)論