版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
天津南開大附屬中7年級數(shù)學(xué)下冊第四章三角形專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,在和中,已知,在不添加任何輔助線的前提下,要使,只需再添加的一個條件不可以是()A. B. C. D.2、有兩根長度分別為7cm,11cm的木棒,下面為第三根的長度,則可圍成一個三角形框架的是()A.3cm B.4cm C.9cm D.19cm3、下列長度的三條線段能組成三角形的是()A.348 B.4410 C.5610 D.56114、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④5、如圖,為估計池塘岸邊A、B兩點(diǎn)的距離,小方在池塘的一側(cè)選取一點(diǎn)O,OA=15米,OB=10米,A、B間的距離不可能是()A.5米 B.10米 C.15米 D.20米6、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.7、一把直尺與一塊三角板如圖放置,若,則()A.120° B.130° C.140° D.150°8、如圖,為了估算河的寬度,我們可以在河的對岸選定一個目標(biāo)點(diǎn),再在河的這一邊選定點(diǎn)和,使,并在垂線上取兩點(diǎn)、,使,再作出的垂線,使點(diǎn)、、在同一條直線上,因此證得,進(jìn)而可得,即測得的長就是的長,則的理論依據(jù)是()A. B. C. D.9、如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),那么圖中的全等三角形的對數(shù)是()A.0 B.1 C.2 D.310、下列各組線段中,能構(gòu)成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動木架,觀察圖②中的變動情況,說一說,其中所蘊(yùn)含的數(shù)學(xué)原理是_____.2、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)3、如圖,已知AC與BD相交于點(diǎn)P,ABCD,點(diǎn)P為BD中點(diǎn),若CD=7,AE=3,則BE=_________.4、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點(diǎn)O,分別過A、B兩點(diǎn)作AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,若AC=5,BD=3,則CD=_______.5、如圖,PA=PB,請你添加一個適當(dāng)?shù)臈l件:___________,使得△PAD≌△PBC.6、如圖,AC,BD相交于點(diǎn)O,若使,則還需添加的一個條件是_____________.(只要填一個即可)7、如圖,點(diǎn)A、B在直線l上,點(diǎn)C是直線l外一點(diǎn),可知CA+CB>AB,其依據(jù)是_____.8、如圖,,,,點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動,同時,點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動.它們運(yùn)動的時間為設(shè)點(diǎn)的運(yùn)動速度為,若使得與全等,則的值為______.9、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).10、如圖,線段AC與BD相交于點(diǎn)O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個條件是____________.(只需填一個條件即可)三、解答題(6小題,每小題10分,共計60分)1、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點(diǎn)M,N分別在等邊的邊上,且,,交于點(diǎn)Q.求證:.同學(xué)們利用有關(guān)知識完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請你給出答案并說明理由.(2)若將題中的點(diǎn)M,N分別移動到的延長線上,是否仍能得到?請你畫出圖形,給出答案并說明理由.2、如圖,E為AB上一點(diǎn),BD∥AC,AB=BD,AC=BE.求證:BC=DE.3、如圖1,AE與BD相交于點(diǎn)C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點(diǎn)C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→A方向以3cm/s的速度運(yùn)動,點(diǎn)Q從點(diǎn)D出發(fā),沿D→E方向以1cm/s的速度運(yùn)動,P、Q兩點(diǎn)同時出發(fā).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時,P、Q兩點(diǎn)同時停止運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時間為t(s).連接PQ,當(dāng)線段PQ經(jīng)過點(diǎn)C時,直接寫出t的值為.4、如圖,已知在△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D為AB的中點(diǎn).點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動,同時,點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動.(1)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等?請說明理由.(2)若點(diǎn)Q的運(yùn)動速度與點(diǎn)P的運(yùn)動速度不相等,當(dāng)點(diǎn)Q的運(yùn)動速度為多少時,能夠使△BPD與△CQP全等?5、已知:如圖,若ABCD,AB=CD且BE=CF.求證:AE=DF.6、如圖,點(diǎn)B、F、C、E在同一條直線上,∠B=∠E,AB=DE,BF=CE.求證:AC=DF.-參考答案-一、單選題1、B【分析】添加AC=AD,利用SAS即可得到兩三角形全等;添加∠D=∠C,利用AAS即可得到兩三角形全等,添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等.【詳解】解:A、添加AC=AD,利用SAS即可得到兩三角形全等,故此選項不符合題意;B、添加BC=BD,不能判定兩三角形全等,故此選項符合題意;C、添加∠D=∠C,利用AAS即可得到兩三角形全等,故此選項不符合題意;D、添加∠CBE=∠DBE,利用ASA即可得到兩三角形全等,故此選項不符合題意;故選:B.【點(diǎn)睛】此題考查了全等三角形的判定,熟練掌握全等三角形的判定方法是解本題的關(guān)鍵.2、C【分析】已知兩邊,則第三邊的長度應(yīng)是大于兩邊的差且小于兩邊的和,這樣就可求出第三邊長的范圍.【詳解】解:依題意得:11﹣7<x<7+11,即4<x<18,9cm適合.故選:C.【點(diǎn)睛】本題考查三角形三邊關(guān)系,是重要考點(diǎn),掌握相關(guān)知識是解題關(guān)鍵.3、C【分析】根據(jù)三角形的任意兩邊之和大于第三邊對各選項分析判斷求解即可.【詳解】解:A.∵3+4<8,∴不能組成三角形,故本選項不符合題意;B.∵4+4<10,∴不能組成三角形,故本選項不符合題意;C.∵5+6>10,∴能組成三角形,故本選項符合題意;D.∵5+6=11,∴不能組成三角形,故本選項不符合題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,熟記三角形的任意兩邊之和大于第三邊是解決問題的關(guān)鍵.4、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結(jié)合線段的和差以及三角形三邊的關(guān)系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當(dāng)A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當(dāng)A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點(diǎn)睛】此題主要考查了三角形三邊關(guān)系,線段之間的關(guān)系,正確分類討論是解題關(guān)鍵.5、A【分析】根據(jù)三角形的三邊關(guān)系得出5<AB<25,根據(jù)AB的范圍判斷即可.【詳解】解:連接AB,根據(jù)三角形的三邊關(guān)系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B間的距離在5和25之間,∴A、B間的距離不可能是5米;故選:A.【點(diǎn)睛】本題主要考查對三角形的三邊關(guān)系定理的理解和掌握,能正確運(yùn)用三角形的三邊關(guān)系定理是解此題的關(guān)鍵.6、D【分析】已知條件AB=AC,還有公共角∠A,然后再結(jié)合選項所給條件和全等三角形的判定定理進(jìn)行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項符合題意;故選:D.【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關(guān)鍵.7、B【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性質(zhì)得到∠CBD=∠1+∠A=130°,由此即可得到答案.【詳解】解:如圖所示,由題意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,故選B.【點(diǎn)睛】本題主要考查了三角形外角的性質(zhì),平行線的性質(zhì),熟知相關(guān)知識是解題的關(guān)鍵.8、C【分析】根據(jù)題意及全等三角形的判定定理可直接進(jìn)行求解.【詳解】解:∵,,∴,在和中,,∴(ASA),∴;故選C.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.9、D【分析】先利用SSS證明△ABD≌△ACD,再利用SAS證明△ABE≌△ACE,最后利用SSS證明△BDE≌△CDE即可.【詳解】∵AB=AC,點(diǎn)D是BC的中點(diǎn),∴AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD,∴∠BAE=∠CAE,∵AB=AC,AE=AE,∴△ABE≌△ACE,∴BE=CE,∵BD=CD,DE=DE,∴△BDE≌△CDE,故選D.【點(diǎn)睛】本題考查了三角形全等的判定和性質(zhì),結(jié)合圖形特點(diǎn),選擇合適的判定方法是解題的關(guān)鍵.10、C【分析】根據(jù)三角形的三邊關(guān)系定理逐項判斷即可得.【詳解】解:三角形的三邊關(guān)系定理:任意兩邊之和大于第三邊.A、,不能構(gòu)成三角形,此項不符題意;B、,不能構(gòu)成三角形,此項不符題意;C、,能構(gòu)成三角形,此項符合題意;D、,不能構(gòu)成三角形,此項不符題意;故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握三角形的三邊關(guān)系定理是解題關(guān)鍵.二、填空題1、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊(yùn)含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.2、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點(diǎn)睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點(diǎn)的運(yùn)用.要求學(xué)生具備運(yùn)用這些定理進(jìn)行推理的能力.3、4【分析】由題意利用全等三角形的判定得出,進(jìn)而依據(jù)全等三角形的性質(zhì)得出進(jìn)行分析計算即可.【詳解】解:∵ABCD,∴,∵點(diǎn)P為BD中點(diǎn),∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點(diǎn)睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.4、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關(guān)系即可求出CD的長度.【詳解】解:∵AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點(diǎn)睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.5、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據(jù)全等三角全等的條件,利用AAS需要添加∠D=∠C,根據(jù)ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據(jù)邊角邊需要添加PD=PC或PC=PD.填入一個即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據(jù)AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據(jù)ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據(jù)SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據(jù)SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點(diǎn)睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關(guān)鍵.6、OA=OD或AB=CD或OB=OC【分析】添加條件是,根據(jù)推出兩三角形全等即可.【詳解】解:,理由是:在和中,,理由是:在和中,,理由是:在和中,故答案為:OA=OD或AB=CD或OB=OC.【點(diǎn)睛】本題主要考查了全等三角形的判定,解題的關(guān)鍵是掌握全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件,若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,且要是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應(yīng)鄰邊.7、在三角形中,兩邊之和大于第三邊【分析】根據(jù)三角形兩邊之和大于第三邊進(jìn)行求解即可.【詳解】解:∵點(diǎn)A、B在直線l上,點(diǎn)C是直線l外一點(diǎn),∴A、B、C可以構(gòu)成三角形,∴由三角形三邊的關(guān)系:在三角形中,兩邊之和大于第三邊可以得到:CA+CB>AB,故答案為:在三角形中,兩邊之和大于第三邊.【點(diǎn)睛】本題主要考查了三角形三邊的關(guān)系,熟知三角形中兩邊之和大于第三邊是解題的關(guān)鍵.8、或【分析】分兩種情形:①當(dāng)≌時,可得:;②當(dāng)≌時,,根據(jù)全等三角形的性質(zhì)分別求解即可.【詳解】解:①當(dāng)≌時,可得:,運(yùn)動時間相同,,的運(yùn)動速度也相同,;②當(dāng)≌時,,,,,故答案為:或.【點(diǎn)睛】本題考查全等三角形的性質(zhì),路程、速度、時間之間的關(guān)系等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識進(jìn)行分類解決問題.9、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.10、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點(diǎn)睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.三、解答題1、(1)仍是真命題,證明見解析(2)仍能得到,作圖和證明見解析【分析】(1)由角邊角得出和全等,對應(yīng)邊相等即可.(2)由(1)問可知BM=CN,故可由邊角邊得出和全等,對應(yīng)角相等,即可得出.(1)∵∴∵∴在和中有∴∴故結(jié)論仍為真命題.(2)∵BM=CN∴CM=AN∵AB=AC,,在和中有∴∴∴故仍能得到,如圖所示【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),從判定兩個三角形全等的方法可知,要判定兩個三角形全等,需要知道這兩個三角形分別有三個元素(其中至少一個元素是邊)對應(yīng)相等,這樣就可以利用題目中的已知邊角迅速、準(zhǔn)確地確定要補(bǔ)充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個三角形全等的思路.2、見解析【分析】根據(jù)平行線的性質(zhì)可得,利用全等三角形的判定定理即可證明.【詳解】證明:∵,∴.在和中,,∴,∴.【點(diǎn)睛】題目主要考查全等三角形的判定定理和平行線的性質(zhì),熟練掌握全等三角形的判定定理是解題關(guān)鍵.3、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質(zhì)可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當(dāng)線段PQ經(jīng)過點(diǎn)C時,△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.4、(1)△BPD與△CQP全等,理由見解析;(2)當(dāng)點(diǎn)Q的運(yùn)動速度為cm/s時,能夠使△BPD與△CQP全等.【分析】(1)經(jīng)過1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級下冊英語月考考試卷帶答案解析
- 臨夏回族自治州2024年甘肅省臨夏州引進(jìn)急需緊缺人才376人(第二批)筆試歷年參考題庫典型考點(diǎn)附帶答案詳解(3卷合一)
- 《GBT 34835-2017 電氣安全 與信息技術(shù)和通信技術(shù)網(wǎng)絡(luò)連接設(shè)備的接口分類》專題研究報告
- 醫(yī)院行政部門崗位的考核重點(diǎn)解析
- 應(yīng)急心理疏導(dǎo)員面試題集
- 面試題庫誠通控股投資發(fā)展部經(jīng)理崗位
- 中國移動通信技術(shù)專員面試題目全解
- 零售連鎖企業(yè)市場拓展經(jīng)理的招聘考試題目及答案參考
- 法務(wù)專員面試題及合同審核參考答案
- 2025年區(qū)域氣候變化適應(yīng)項目可行性研究報告
- 2025北京熱力熱源分公司招聘10人參考筆試題庫及答案解析
- 2025年湖南省法院系統(tǒng)招聘74名聘用制書記員筆試參考題庫附答案
- 2025廣西機(jī)電職業(yè)技術(shù)學(xué)院招聘教職人員控制數(shù)人員79人備考題庫及答案解析(奪冠)
- 2026屆高考政治一輪復(fù)習(xí):必修2 經(jīng)濟(jì)與社會 必背主干知識點(diǎn)清單
- 大學(xué)生校園創(chuàng)新創(chuàng)業(yè)計劃書
- 護(hù)士職業(yè)壓力管理與情緒調(diào)節(jié)策略
- 貴州國企招聘:2025貴州涼都能源有限責(zé)任公司招聘10人備考題庫及答案詳解(必刷)
- 招標(biāo)人主體責(zé)任履行指引
- 2025-2026學(xué)年北師大版五年級數(shù)學(xué)上冊(全冊)知識點(diǎn)梳理歸納
- 2021年廣東省廣州市英語中考試卷(含答案)
- 我的新式汽車(課件)-人美版(北京)(2024)美術(shù)二年級上冊
評論
0/150
提交評論