版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、若關于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.22、直線不經過第二象限,則關于的方程實數解的個數是(
).A.0個 B.1個 C.2個 D.1個或2個3、如圖,在正方形網格上有5個三角形(三角形的頂點均在格點上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(
)A.②④ B.②⑤ C.③④ D.④⑤4、神奇的自然界處處蘊含著數學知識.動物學家在鸚鵡螺外殼上發(fā)現,其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現了數學中的(
)A.平移 B.旋轉 C.軸對稱 D.黃金分割5、下列方程中,一定是關于x的一元二次方程的是(
)A. B.C. D.6、如圖,平行四邊形ABCD的對角線AC,BD相交于點O,添加下列條件仍不能判斷四邊形ABCD是矩形的是(
)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°二、多選題(6小題,每小題2分,共計12分)1、平行四邊形ABCD的對角線相交于點O,分別添加下列條件使得四邊形ABCD是矩形的條件有(
)是菱形的條件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO2、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=13、下列四個說法中,不正確的是(
)A.一元二次方程有實數根B.一元二次方程有實數根C.一元二次方程有實數根D.一元二次方程x2+4x+5=a(a≥1)有實數根4、如圖,△ABC中,P為AB上點,在下列四個條件中能確定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.5、如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結論,正確的有(
).A. B.C. D.6、(多選)如圖,正方形ABCD的對角線AC,BD相交于D于點O,點P為線段AC上一點,連接BP,過點P作交AD于點E,連接BE,若,,下列說法正確的有(
)A. B. C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,∠A=30°,∠B=90°,D為AB中點,E在線段AC上,,則_____.2、若,則________.3、如圖,將矩形的四個角向內折起,恰好拼成一個無縫隙重疊的四邊形,若,,則邊的長是____.4、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當四邊形ADPD′是正方形時,CD′的長為___.(2)當CD′的長最小時,PC的長為___.5、若關于x的一元二次方程有兩個不相等的實數根,則m的值可以是____.(寫出一個即可)6、若代數式有意義,則x的取值范圍是_____.7、如圖,在邊長為1的正方形ABCD中,等邊△AEF的頂點E、F分別在邊BC和CD上則下列結論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號填寫)8、某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴大銷售量,盡快減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出2件.若商場平均每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應降價多少元?設每件襯衫降價x元,由題意列得方程______.四、解答題(6小題,每小題10分,共計60分)1、如圖,在邊長為1的正方形網格中建立平面直角坐標系,已知△ABC三個頂點分別為A(﹣1,2)、B(2,1)、C(4,5).(1)以原點O為位似中心,在x軸的上方畫出△A1B1C1,使△A1B1C1與△ABC位似,且相似比為2;(2)△A1B1C1的面積是平方單位.(3)點P(a,b)為△ABC內一點,則在△A1B1C1內的對應點P’的坐標為.2、如圖,在平面直角坐標系中,的三個頂點坐標分別為,,.以原點O為位似中心,位似比為,在y軸的左側,畫出將放大后的,并寫出點的坐標______.3、已知a、b、c是△ABC的三邊,且滿足,且a+b+c=12,請你探索△ABC的形狀.4、如圖所示,AD、BC為兩路燈,身高相同的小明、小亮站在兩路燈桿之間,兩人相距6.5m,小明站在P處,小亮站在Q處,小明在路燈C下的影長為2m,已知小明身高1.8m,路燈BC高9m.①計算小亮在路燈D下的影長;②計算建筑物AD的高.5、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.6、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.-參考答案-一、單選題1、C【解析】【分析】把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選C.【考點】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.2、D【解析】【分析】根據直線不經過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數根,故選:D.【考點】此題考查一次函數的性質:利用函數圖象經過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.3、A【解析】【分析】根據兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點】本題考查相似三角形的判定,解題的關鍵是理解題意,靈活運用所學知識解決問題.4、D【解析】【分析】根據黃金分割的定義即可求解.【詳解】解:動物學家在鸚鵡螺外殼上發(fā)現,其每圈螺紋的直徑與相鄰螺紋直徑的比約為0.618.這體現了數學中的黃金分割.故選:D【考點】本題考查了黃金分割的定義,黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約等于0.618,這個比例被公認為是最能引起美感的比例,因此被稱為黃金分割.熟知黃金分割的定義是解題關鍵.5、B【解析】【分析】根據一元二次方程的概念(只含一個未知數,并且含有未知數的項的次數最高為2次的整式方程是一元二次方程)逐一進行判斷即可得.【詳解】解:A、,當時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關鍵.6、B【解析】【分析】由勾股定理的逆定理證得∠ABC=90°,根據有一個角是直角的平行四邊形是矩形可判斷A;根據有一組鄰邊相等的平行四邊形是菱形可判斷B;根據對角線相等的平行四邊形是矩形可判斷C;根據有一個角是直角的平行四邊形是矩形可判斷D.【詳解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴?ABCD為矩形,故本選項不符合題意;B.∵AB=AD,∴?ABCD為菱形,故本選項符合題意;C.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴?ABCD是矩形,故本選項不符合題意;D.∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴?ABCD為矩形,故本選項不符合題意;故選:B.【考點】本題考查了矩形的判定定理,勾股定理的逆定理,平行四邊形的性質,熟練掌握矩形的判定方法是解決問題的關鍵.二、多選題1、AEBCD【解析】【分析】因為四邊形ABCD是平行四邊形,要成為矩形加上一個角為直角或對角線相等即可;要使其成為菱形,加上一組鄰邊相等或對角線垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點】考查了菱形和矩形的判定,解題關鍵是掌握平行四邊形的性質和菱形、矩形的判定方法.2、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.3、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數根,錯誤,符合題意;、△,方程無實數根,錯誤,符合題意;、△,方程無實數根,錯誤,符合題意;、△,方程有實數根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關系:解題的關鍵是掌握(1)△方程有兩個不相等的實數根;(2)△方程有兩個相等的實數根;(3)△方程沒有實數根.4、ABD【解析】【分析】根據有兩組角對應相等的兩個三角形相似可對A、B、C進行判斷;根據兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對D進行判斷.【詳解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故選項A正確,符合題意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故選項B正確,符合題意;∵∠CAP=∠BAC,只有一組角相等,∴不能判斷△APC和△ACB相似,故選項C錯誤,不符合題意;∵,∠A是夾角,∴△APC∽△ACB,故選項D正確,符合題意.故答案為:ABD.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似;有兩組角對應相等的兩個三角形相似.5、AC【解析】【分析】由中線BE和中線CD得DE是△ABC的中位線,由中位線的性質判斷A,B;由中位線得證△DOE∽△COB,從而判斷C;求得△ODE與△ABC的面積關系,由中線CD得△ADC和△ABC的面積關系,從而判斷D.【詳解】解:∵BE和CD是△ABC的中線,∴DE是△ABC的中位線,點O是△ABC的重心,∴DE:BC=1:2,故選項A正確,符合題意;AD:AB=1:2,DE∥BC,∴∠OED=∠OBC,∠ODE=∠OCB,∴△OED∽△OBC,∴,故選項B錯誤,不符合題意;∴OE:OB=ED:BC=1:2,∴AD:AB=OE:OB,故選項C正確,符合題意;∵CD是△ABC的中線,∴,∵OE:OB=OD:OC=1:2∴OC:DC=2:3∴,∴∴,故選項D錯誤,不符合題意;故答案為:A、C.【考點】此題考查了中位線的性質,涉及了比例線段和相似三角形的性質,熟練掌握相關基本性質是解題的關鍵.6、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結論D錯誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結論D錯誤,故選:ABC.【考點】本題考查正方形的性質及應用,涉及全等三角形的判定與性質,等腰直角三角形的性質及應用等知識,解題的關鍵是作輔助線,證明△PKE≌△PTB.三、填空題1、或【解析】【分析】由題意可求出,取AC中點E1,連接DE1,則DE1是△ABC的中位線,滿足,進而可求此時,然后在AC上取一點E2,使得DE1=DE2,則,證明△DE1E2是等邊三角形,求出E1E2=,即可得到,問題得解.【詳解】解:∵D為AB中點,∴,即,取AC中點E1,連接DE1,則DE1是△ABC的中位線,此時DE1∥BC,,∴,在AC上取一點E2,使得DE1=DE2,則,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等邊三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,綜上,的值為:或,故答案為:或.【考點】本題考查了三角形中位線的性質,平行線分線段成比例,等邊三角形的判定和性質以及含30°角的直角三角形的性質等,根據進行分情況求解是解題的關鍵.2、【解析】【分析】設,,代入求解即可.【詳解】由可設,,k是非零整數,則.故答案為:.【考點】本題主要考查了比例的基本性質,準確利用性質變形是解題的關鍵.3、【解析】【分析】由折疊的性質和矩形的性質可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,FB=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點】本題考查了翻折變換,矩形的性質,勾股定理,全等三角形的判定和性質,利用勾股定理列出方程是本題的關鍵.4、
【解析】【分析】(1)根據四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質和折疊的性質求出的最小值,再設,則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質,得,,∴的最小值.設,則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質和折疊的性質,正方形的性質,勾股定理,根據矩形的性質和折疊的性質確定的最小值成為解答本題的關鍵.5、0(答案不唯一)【解析】【分析】根據一元二次方程根的判別式求出的取值范圍,由此即可得出答案.【詳解】解:由題意得:此一元二次方程根的判別式,解得,則的值可以是0,故答案為:0(答案不唯一).【考點】本題考查了一元二次方程根的判別式,熟練掌握一元二次方程根的判別式是解題關鍵.6、﹣3≤x≤且x≠.【解析】【分析】根據二次根式的性質,被開方數大于等于0;分母中有字母,分母不為0.【詳解】解:若代數式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數.注意:二次根式中的被開方數必須是非負數,否則二次根式無意義;當二次根式在分母上時還要考慮分母不等于零,此時被開方數大于0.7、①②④【解析】【分析】根據三角形的全等的知識可以判斷①的正誤;根據角角之間的數量關系,以及三角形內角和為180°判斷②的正誤;根據等邊三角形的邊長求得直角三角形的邊長,從而求得面積③的正誤,根據勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說法正確;∵正方形ABCD的邊長為1,③說法錯誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說法正確;∴正確的有①②④.故答案為①②④.【考點】本題主要考查正方形的性質的知識點,解答本題的關鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.8、【解析】【分析】設每件襯衫降價x元,根據每件襯衫每降價1元,商場平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設每件襯衫降價x元,根據題意得,故答案為:【考點】本題考查了一元二次方程的應用,根據題意列出一元二次方程是解題的關鍵.四、解答題1、(1)見解析;(2)28;(3)(2a,2b).【解析】【分析】(1)連接OB,延長OB到B1使得OB1=2OB,同法作出A1,C1,連接A1C1,B1C1,A1B1即可.(2)兩條分割法求出三角形的面積即可.(3)利用相似三角形的性質解決問題即可.【詳解】解:(1)△A1B1C1即為所求.(2)△A1B1C1的面積=4S△ABC=4×(4×5﹣×3×5﹣×1×3﹣×2×4)=28,故答案為:28.(3)點P(a,b)為△ABC內一點,則在△A1B1C1內的對應點P’的坐標為(2a,2b),故答案為:(2a,2b).【考點】本題考查作圖——位似變換,三角形的面積等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、圖見解析,【解析】【分析】由位似的性質進行作圖和求解,即可得到答案.【詳解】如圖,即為所求,故答案為:【考點】本題考查了位似三角形的性質,在直角坐標系中作位似圖形,以及考查了坐標與圖形,解題的關鍵是掌握位似的性質進行解題.3、△ABC是直角三角形,理由見解析【解析】【分析】根據,可以設=k,然后根據a+b+c=12,可以求得k的值,進而求得a、b、c的值,再根據勾股定理的逆定理,即可判斷△ABC的形狀.【詳解】解:令=k,∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8,又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3,∴a=5,b=3,c=4,∵32+42=52,∴△ABC是直角三角形.【考點】本題考查因式分解的應用、勾股定理的逆定理,解答此類問題的關鍵是明確題意,求出a、b、c的值.4、①;②.【解析】【分析】解此題的關鍵是找到相似三角形,利用相似三角形的性質,相似三角形的對應邊成比例求解.【詳解】①∵,,∴∵,∴∴∴∴;②∵,,∴∵,∴∴∴∴.【考點】本題考查了相似三角形,解題的關鍵是找到相似三角形利用相似三角形的對應邊成比例進行求解.5、(6-)s【解析】【分析】設點E運動的時間是x秒.根據題意可得方程,解方程即可得到結論.【詳解】解:設點E運動的時間是xs.根據題意可得22+(2x)2=(3-2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025廣西桂林旅游學院公開招聘教職人員控制數工作人員100人筆試考試備考試題及答案解析
- 撫州市2025年市屬國有企業(yè)公開招聘員工市國威安保服務有限公司押運員體能測評考試筆試參考題庫附答案解析
- 產品經理崗位能力測試及答案詳解
- 錦江區(qū)新興領域黨建工作專員招募(20人)考試筆試參考題庫附答案解析
- 行政助理初級崗位能力考試題庫含答案
- 2025廣東廣州市花都區(qū)華僑初級中學招聘1人筆試考試備考題庫及答案解析
- 活動策劃崗位面試題集及答案參考手冊
- 2025云南德宏州州級機關遴選公務員26人筆試歷年題庫附答案解析
- 2025德州夏津縣事業(yè)單位工作人員“歸雁興鄉(xiāng)”考試筆試參考題庫附答案解析
- 2025江西贛江新區(qū)永修投資集團招聘3人考試筆試備考題庫及答案解析
- 交通運輸行業(yè)數據集建設實施方案
- 測繪安全培訓課件圖片
- 民族團結教學課件
- 嚴格電話使用管理辦法
- (2025年標準)簡單砌石墻協(xié)議書
- (2025年標準)鐵路實習協(xié)議書
- 重慶市涪陵榨菜集團股份有限公司營運能力分析
- 與4s店二手車合作合同協(xié)議
- 《中華民族共同體概論》考試復習題庫(含答案)
- 國家開放大學《公共政策概論》形考任務1-4答案
- 學堂在線 雨課堂 學堂云 西方哲學精神探源 期末考試答案
評論
0/150
提交評論