版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.102、平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=OC=,則點(diǎn)B的坐標(biāo)為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)3、如圖是用若干個(gè)全等的等腰梯形拼成的圖形,下列說(shuō)法錯(cuò)誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是4、如圖,在中,,點(diǎn),分別是,上的點(diǎn),,,點(diǎn),,分別是,,的中點(diǎn),則的長(zhǎng)為().A.4 B.10 C.6 D.85、下列條件中,能判定四邊形是正方形的是()A.對(duì)角線相等的平行四邊形 B.對(duì)角線互相平分且垂直的四邊形C.對(duì)角線互相垂直且相等的四邊形 D.對(duì)角線相等且互相垂直的平行四邊形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,正方形的邊長(zhǎng)為4,它的兩條對(duì)角線交于點(diǎn),過(guò)點(diǎn)作邊的垂線,垂足為,的面積為,過(guò)點(diǎn)作的垂線,垂足為,△的面積為,過(guò)點(diǎn)作的垂線,垂足為,△的面積為,△的面積為,那么__,則__.2、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.3、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點(diǎn),將?ABCD沿EH翻折,使得AD的對(duì)應(yīng)線段FG經(jīng)過(guò)點(diǎn)C,若FG⊥CD,CG=4,則EF的長(zhǎng)度為_(kāi)____.4、如圖,在中,,點(diǎn)、、分別是三邊的中點(diǎn),且,則的長(zhǎng)度是__________.5、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F,G分別在邊AB,AD上,則cos∠EFG的值為_(kāi)_______.三、解答題(5小題,每小題10分,共計(jì)50分)1、(1)如圖a,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,過(guò)點(diǎn)D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說(shuō)明理由.
(2)如圖b,如果題目中的矩形變?yōu)榱庑?,結(jié)論應(yīng)變?yōu)槭裁??說(shuō)明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫?,結(jié)論又應(yīng)變?yōu)槭裁矗空f(shuō)明理由.2、已知:?ABCD的對(duì)角線AC,BD相交于O,M是AO的中點(diǎn),N是CO的中點(diǎn),求證:BM∥DN,BM=DN.
3、(1)先化簡(jiǎn),再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如圖,菱形ABCD中,AB=AC,E、F分別是BC、AD的中點(diǎn),連接AE、CF.證明:四邊形AECF是矩形.4、如圖,將□ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F,連接AC、BE.(1)求證:四邊形ABEC是平行四邊形;(2)若∠AFC=2∠ADC,求證:四邊形ABEC是矩形.5、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當(dāng)AC=BD時(shí),四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對(duì)角線的條數(shù)也能判定它是正五邊形,問(wèn):至少需要幾條對(duì)角線相等才能判定它是正五邊形?請(qǐng)說(shuō)明理由.-參考答案-一、單選題1、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長(zhǎng),然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時(shí),OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.2、C【解析】【分析】作,求得、的長(zhǎng)度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點(diǎn)睛】此題考查了平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是靈活運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.3、D【解析】【分析】如圖(見(jiàn)解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項(xiàng);先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項(xiàng).【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項(xiàng)B正確;沒(méi)有指明哪個(gè)角是底角,梯形的底角是或,選項(xiàng)D錯(cuò)誤;如圖,連接,,是等邊三角形,,,點(diǎn)共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項(xiàng)A、C正確;故選:D.【點(diǎn)睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí)點(diǎn),熟練掌握各判定與性質(zhì)是解題關(guān)鍵.4、B【解析】【分析】根據(jù)三角形中位線定理得到PD=BF=6,PD∥BC,根據(jù)平行線的性質(zhì)得到∠PDA=∠CBA,同理得到∠PDQ=90°,根據(jù)勾股定理計(jì)算,得到答案.【詳解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵點(diǎn)P,D分別是AF,AB的中點(diǎn),∴PD=BF=6,PD//BC,∴∠PDA=∠CBA,同理,QD=AE=8,∠QDB=∠CAB,∴∠PDA+∠QDB=90°,即∠PDQ=90°,∴PQ==10,故選:B.【點(diǎn)睛】本題考查的是三角形中位線定理、勾股定理,掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)正方形的判定定理進(jìn)行判斷即可.【詳解】解:A、對(duì)角線相等的平行四邊形是矩形,不符合題意;B、對(duì)角線互相平分且垂直的四邊形是菱形,不符合題意;對(duì)角線相等且互相垂直的平行四邊形是正方形,故C選項(xiàng)不符合題意;D選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.二、填空題1、【解析】【分析】由正方形的性質(zhì)得出、、、、,,得出規(guī)律,再求出它們的和即可.【詳解】解:四邊形是正方形,,,,,,,,,,,;故答案為:;.【點(diǎn)睛】本題是圖形的變化題,考查了正方形的性質(zhì)、三角形面積的計(jì)算,解題的關(guān)鍵是通過(guò)計(jì)算三角形的面積得出規(guī)律.2、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.3、【解析】【分析】延長(zhǎng)CF與AB交于點(diǎn)M,由平行四邊形的性質(zhì)得BC長(zhǎng)度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長(zhǎng)CF與AB交于點(diǎn)M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.4、【解析】【分析】根據(jù)中位線定理可得的長(zhǎng)度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長(zhǎng)度.【詳解】解:∵點(diǎn)、、分別是三邊的中點(diǎn),且∴∵∴故答案為:【點(diǎn)睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.5、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質(zhì)得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計(jì)算出BE=CE=,然后證明BE⊥AB,利用勾股定理計(jì)算出AE,從而得到OA的長(zhǎng);設(shè)AF=x,根據(jù)折疊的性質(zhì)得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計(jì)算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點(diǎn)為CD的中點(diǎn),∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設(shè)AF=x,∵菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點(diǎn)睛】本題考查了折疊的性質(zhì)以及菱形的性質(zhì),注意掌握折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.三、解答題1、(1)四邊形CODP是菱形,理由見(jiàn)解析;(2)四邊形CODP是矩形,理由見(jiàn)解析;(3)四邊形CODP是正方形,理由見(jiàn)解析【分析】(1)先證明四邊形CODP是平行四邊形,再由矩形的性質(zhì)可得OD=OC,即可證明平行四邊形OCDP是菱形;(2)先證明四邊形CODP是平行四邊形,再由菱形的性質(zhì)可得∠DOC=90°,即可證明平行四邊形OCDP是矩形;(3)先證明四邊形CODP是平行四邊形,再由正方形的性質(zhì)可得BD⊥AC,DO=OC,即可證明平行四邊形OCDP是正方形;【詳解】解:(1)四邊形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是矩形,∴OD=OC,∴平行四邊形OCDP是菱形;(2)四邊形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四邊形OCDP是矩形;(3)四邊形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四邊形CODP是菱形,∴菱形OCDP是正方形.【點(diǎn)睛】本題主要考查了矩形的性質(zhì)與判定,菱形的性質(zhì)與判定,正方形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握特殊平行四邊形的性質(zhì)與判定條件.2、見(jiàn)解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點(diǎn),N是CO的中點(diǎn),進(jìn)而可得MO=ON,進(jìn)而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,
∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M(jìn)為AO的中點(diǎn),N為CO的中點(diǎn),即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.3、(1),0;(2)證明見(jiàn)解析.【分析】(1)根據(jù)整式的乘法運(yùn)算法則先去括號(hào),然后合并同類項(xiàng)化簡(jiǎn),然后代入求解即可;(2)首先根據(jù)菱形的性質(zhì)得到,,然后根據(jù)E、F分別是BC、AD的中點(diǎn),得出,根據(jù)一組對(duì)邊平行且相等證明出四邊形AECF是平行四邊形,然后根據(jù)等腰三角形三線合一的性質(zhì)得出,即可證明出四邊形AECF是矩形.【詳解】(1)(a+b)(a﹣b)﹣a(a﹣2b)將a=1,b=2代入得:原式=;(2)如圖所示,∵四邊形ABCD是菱形,∴,且,又∵E、F分別是BC、AD的中點(diǎn),∴,∴四邊形AECF是平行四邊形,∵AB=AC,E是BC的中點(diǎn),∴,即,∴平行四邊形AECF是矩形.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,代數(shù)式求值問(wèn)題,菱形的性質(zhì)和矩形的判定,解題的關(guān)鍵是熟練掌握整式的混合運(yùn)算法則,菱形的性質(zhì)和矩形的判定定理.4、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;【分析】(1)根據(jù)平行四邊形的性質(zhì)得到,AB=CD,然后根據(jù)CE=DC,得到AB=EC,,利用“一組對(duì)邊平行且相等的四邊形是平行四邊形”判斷即可;(2)由(1)得的結(jié)論得四邊形ABEC是平行四邊形,再通過(guò)角的關(guān)系得出FA=FE=FB=FC,AE=BC,可得結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,AB=CD,∵CE=DC,∴AB=EC,,∴四邊形ABEC是平行四邊形;(2)∵由(1)知,四邊形ABEC是平行四邊形,∴FA=FE,F(xiàn)B=FC.∵四邊形ABCD是平行四邊形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四邊形ABEC是矩形.【點(diǎn)睛】本題考查的是平行四邊形的判定與性質(zhì)及矩形的判定,關(guān)鍵是先由平行四邊形的性質(zhì)證三角形全等,然后推出平行四邊形,再通過(guò)角的關(guān)系證矩形.5、(1)是;(2)見(jiàn)解析;(3)至少需要3條對(duì)角線相等才能判定它是正五邊形,見(jiàn)解析【分析】(1)根據(jù)對(duì)角線相等的菱形是正方形,證明即可;(2)由SSS證明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出結(jié)論;(3)由SSS證明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS證明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四邊形ABCE內(nèi)角和為360°得出∠ABC+∠ECB=180°,證出AB∥CE,由平行線的性質(zhì)得出∠ABE=∠BEC,∠BAC=∠ACE,證出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BC
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)榮譽(yù)介紹
- 摩納哥會(huì)館介紹
- 2025 小學(xué)四年級(jí)思想品德下冊(cè)公共場(chǎng)合優(yōu)化行為規(guī)范課件
- 養(yǎng)老院老人心理咨詢師晉升制度
- 妝面定制培訓(xùn)課件
- 工行基礎(chǔ)業(yè)務(wù)培訓(xùn)課件
- 2026年三支一扶申論寫(xiě)作復(fù)習(xí)題含答案
- 2026年輔警法律法規(guī)解讀題庫(kù)含答案
- 中國(guó)煉油技術(shù)介紹
- 化學(xué)藥品安全教育課件
- GB/T 43869-2024船舶交通管理系統(tǒng)監(jiān)視雷達(dá)通用技術(shù)要求
- 藥店全年主題活動(dòng)方案設(shè)計(jì)
- 病媒生物防制服務(wù)外包 投標(biāo)方案(技術(shù)方案)
- 年產(chǎn)6萬(wàn)噸環(huán)氧樹(shù)脂工藝設(shè)計(jì)
- 軌道線路養(yǎng)護(hù)維修作業(yè)-改道作業(yè)
- 北師大版五年級(jí)數(shù)學(xué)上冊(cè)第七單元《可能性》教案
- 2023-2024學(xué)年上海市閔行區(qū)四上數(shù)學(xué)期末綜合測(cè)試試題含答案
- 解除勞動(dòng)合同證明電子版(6篇)
- 呼吸科規(guī)培疑難病例討論
- 有關(guān)中國(guó)居民死亡態(tài)度的調(diào)查報(bào)告
- 核對(duì)稿100和200單元概述
評(píng)論
0/150
提交評(píng)論