難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)攻克試題(含解析)_第1頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)攻克試題(含解析)_第2頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)攻克試題(含解析)_第3頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)攻克試題(含解析)_第4頁(yè)
難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)攻克試題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列說法:①若,則為的中點(diǎn)②若,則是的平分線③,則④若,則,其中正確的有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°后得到△AFB,連接EF,有下列結(jié)論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④3、已知,則為(

)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能4、如圖,在和中,,,,線段BC的延長(zhǎng)線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長(zhǎng)度為(

)A.4 B. C.5 D.5、如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn),重合),在AE同側(cè)分別作等邊三角形ABC和等邊三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連結(jié)PQ.以下結(jié)論錯(cuò)誤的是(

)A.∠AOB=60° B.AP=BQC.PQ∥AE D.DE=DP第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,將一張直角三角形紙片對(duì)折,使點(diǎn)B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長(zhǎng)是_____cm.2、如圖,已知AC與BF相交于點(diǎn)E,ABCF,點(diǎn)E為BF中點(diǎn),若CF=8,AD=5,則BD=_____.3、如圖,在中,按以下步驟作圖:①以點(diǎn)B為圓心,任意長(zhǎng)為半徑作弧,分別交AB、BC于點(diǎn)D、E.②分別以點(diǎn)D、E為圓心,大于的同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)F.③作射線BF交AC于點(diǎn)G.如果,,的面積為18,則的面積為________.4、如圖,已知∠1=∠2、AD=AB,若再增加一個(gè)條件不一定能使結(jié)論成立,則這個(gè)條件是_____.5、如圖是由九個(gè)邊長(zhǎng)為1的小正方形拼成的大正方形,圖中∠1+∠2+∠3+∠4+∠5的度數(shù)為______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在中,是邊上的一點(diǎn),,平分,交邊于點(diǎn),連接.(1)求證:;(2)若,,求的度數(shù).2、(2019秋?九龍坡區(qū)校級(jí)月考)如圖.在四邊形ABCD中,∠B+∠ADC=180°,AB=AD,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF∠BAD,求證:EF=BE﹣FD.3、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).4、如圖,在中,.(1)如圖①所示,直線過點(diǎn),于點(diǎn),于點(diǎn),且.求證:.(2)如圖②所示,直線過點(diǎn),交于點(diǎn),交于點(diǎn),且,則是否成立?請(qǐng)說明理由.5、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;(2)若EF⊥AE交AC于F,求證:∠C=2∠FEC.-參考答案-一、單選題1、A【解析】【分析】根據(jù)直線中點(diǎn)、角平分線、有理數(shù)大小比較以及絕對(duì)值的性質(zhì),逐一判定即可.【詳解】當(dāng)三點(diǎn)不在同一直線上的時(shí)候,點(diǎn)C不是AB的中點(diǎn),故錯(cuò)誤;當(dāng)OC位于∠AOB的內(nèi)部時(shí)候,此結(jié)論成立,故錯(cuò)誤;當(dāng)為負(fù)數(shù)時(shí),,故錯(cuò)誤;若,則,故正確;故選:A.【考點(diǎn)】此題主要考查直線中點(diǎn)、角平分線、有理數(shù)大小比較以及絕對(duì)值的性質(zhì),熟練掌握,即可解題.2、C【解析】【分析】利用旋轉(zhuǎn)性質(zhì)可得△ABF≌△ACD,根據(jù)全等三角形的性質(zhì)一一判斷即可.【詳解】解:∵△ADC繞A順時(shí)針旋轉(zhuǎn)90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無(wú)法判斷BE=CD,故①錯(cuò)誤,故選:C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.3、C【解析】【分析】根據(jù)∠A和∠B的度數(shù)可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點(diǎn)】此題考查的是直角三角形的判定,掌握有兩個(gè)內(nèi)角互余的三角形是直角三角形是解決此題的關(guān)鍵.4、B【解析】【分析】證明,,根據(jù)全等三角形對(duì)應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.5、D【解析】【分析】利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,得出A正確;根據(jù)△CQB≌△CPA(ASA),得出B正確;由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,得出C正確;根據(jù)∠CDE=60°,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,可知∠DQE≠∠CDE,得出D錯(cuò)誤.【詳解】解:∵等邊△ABC和等邊△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,在△ACD與△BCE中,,∴△ACD≌△BCE(SAS),∴∠CBE=∠DAC,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ,又∵AC=BC,在△CQB與△CPA中,,∴△CQB≌△CPA(ASA),∴CP=CQ,又∵∠PCQ=60°可知△PCQ為等邊三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故C正確,∵△CQB≌△CPA,∴AP=BQ,故B正確,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故D錯(cuò)誤;∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正確.故選:D.【考點(diǎn)】本題考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)不變性,解題的關(guān)鍵是找到不變量.二、填空題1、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長(zhǎng)是18cm.故答案為8.2、3【解析】【分析】利用全等三角形的判定定理和性質(zhì)定理可得結(jié)果.【詳解】解:∵AB∥CF,∴∠A=∠FCE,∠B=∠F,∵點(diǎn)E為BF中點(diǎn),∴BE=FE,在△ABE與△CFE中,,∴△ABE≌△CFE(AAS),∴AB=CF=8,∵AD=5,∴BD=3,故答案為:3.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理,熟練掌握定理是解答此題的關(guān)鍵.3、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結(jié)合已知條件和三角形的面積公式求得GH,最后運(yùn)用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點(diǎn)】本題考查了角平分線定理和三角形面積公式的應(yīng)用,通過作法發(fā)現(xiàn)角平分線并靈活應(yīng)用角平分線定理是解答本題的關(guān)鍵.4、DE=BC【解析】【分析】根據(jù)題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點(diǎn)】本題考查了三角形全等的判定定理,熟記并靈活運(yùn)用各種判定方法是解題關(guān)鍵.5、225°【解析】【分析】首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=∠2+∠BDA=90°,即可求得∠1+∠2+∠3+∠4+∠5的值.【詳解】解:如圖所示:在△ABC和△AEF中,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在Rt△ABD和Rt△AEH中,∴Rt△ABD≌Rt△AEH(HL),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案為:225°.【考點(diǎn)】此題主要考查了全等三角形的判定和性質(zhì),關(guān)鍵是掌握全等三角形的性質(zhì):全等三角形對(duì)應(yīng)角相等即可求解.三、解答題1、(1)見解析(2)50°【解析】【分析】(1)根據(jù)平分,可得,即可求證;(2)根據(jù)全等三角形的性質(zhì)可得,再由三角形外角的性質(zhì),即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.2、詳見解析【解析】【分析】在BE上截取BG,使BG=DF,連接AG.根據(jù)SAS證明△ABG≌△ADF得到AG=AF,∠BAG=∠DAF,根據(jù)∠EAF∠BAD,可知∠GAE=∠EAF,可證明△AEG≌△AEF,EG=EF,那么EF=GE=BE﹣BG=BE﹣DF.【詳解】證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF∠BAD.∴∠GAE=∠EAF.在△AEG和△AEF中,,∴△AEG≌△AEF(SAS).∴EG=EF,∵EG=BE﹣BG∴EF=BE﹣FD.【考點(diǎn)】此題主要考查全等三角形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)已知條件作出輔助線求解.3、35o【解析】【分析】根據(jù)全等三角形對(duì)應(yīng)角相等可得∠C=∠D,∠OBC=∠OAD,再根據(jù)三角形的內(nèi)角和等于180°表示出∠OBC,然后利用四邊形的內(nèi)角和等于360°列方程求解即可.【詳解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65o,∴∠OBC=180o?65o?∠C=115o?∠C,在四邊形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360o,∴65o+115o?∠C+135o+115o?∠C=360o,解得∠C=35o.【考點(diǎn)】此題考查了全等三角形的性質(zhì)和四邊形的內(nèi)角和等于360°,熟練掌握這兩個(gè)性質(zhì)是解題的關(guān)鍵.4、(1)見解析;(2)仍然成立,理由見解析【解析】【分析】(1)首先根據(jù)同角的余角相等得到,然后證明,然后根據(jù)全等三角形對(duì)應(yīng)邊相等得到,,然后通過線段之間的轉(zhuǎn)化即可證明;(2)首先根據(jù)三角形內(nèi)角和定理得到,然后證明,根據(jù)全等三角形對(duì)應(yīng)邊相等得到,最后通過線段之間的轉(zhuǎn)化即可證明.【詳解】證明:(1)∵,,∴,∴,∵,∴,∴,在和中,,∴,∴,,∵,∴;(2)仍然成立,理由如下:∵,∵,∴,在和中,,∴,∴,,∵,∴.【考點(diǎn)】此題考查了全等三角形的性質(zhì)和判定,同角的與相等,三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是根據(jù)同角的余角相等或三角形內(nèi)角和定理得到.5、(1)17.5°;(2)證明過程見解析【解析】【分析】(1)首先計(jì)算出∠B,∠BAC的度數(shù),根據(jù)AE是∠BAC的角平分線可得∠EAC=37.5°,再根據(jù)Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數(shù),進(jìn)而可得答案;(2)過A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內(nèi)角和定理得到∠EAC=90°-∠C,進(jìn)而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由內(nèi)角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,兩銳角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5°,故答案為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論