山西省財(cái)政稅務(wù)??茖W(xué)?!遁浨榇髷?shù)據(jù)分析》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁
山西省財(cái)政稅務(wù)??茖W(xué)?!遁浨榇髷?shù)據(jù)分析》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁
山西省財(cái)政稅務(wù)??茖W(xué)校《輿情大數(shù)據(jù)分析》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁
山西省財(cái)政稅務(wù)??茖W(xué)校《輿情大數(shù)據(jù)分析》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁
山西省財(cái)政稅務(wù)??茖W(xué)校《輿情大數(shù)據(jù)分析》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共2頁山西省財(cái)政稅務(wù)??茖W(xué)校《輿情大數(shù)據(jù)分析》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)隱私和安全是必須要考慮的問題。假設(shè)我們處理的是敏感的個(gè)人數(shù)據(jù)。以下關(guān)于數(shù)據(jù)隱私和安全的描述,哪一項(xiàng)是不正確的?()A.應(yīng)該采取加密、匿名化等技術(shù)手段保護(hù)數(shù)據(jù)的隱私B.遵守相關(guān)的法律法規(guī),如數(shù)據(jù)保護(hù)法、隱私政策等C.只要數(shù)據(jù)在內(nèi)部使用,就不需要考慮數(shù)據(jù)隱私和安全問題D.對數(shù)據(jù)的訪問和使用進(jìn)行嚴(yán)格的權(quán)限管理,防止數(shù)據(jù)泄露2、當(dāng)分析一個(gè)在線教育平臺的學(xué)生學(xué)習(xí)行為數(shù)據(jù),比如學(xué)習(xí)時(shí)間、課程完成率、作業(yè)得分等,以評估教學(xué)質(zhì)量和學(xué)生的學(xué)習(xí)效果。由于學(xué)生的個(gè)體差異較大,為了進(jìn)行公平和準(zhǔn)確的分析,以下哪種處理方式可能是必要的?()A.對學(xué)生進(jìn)行分組比較B.只關(guān)注優(yōu)秀學(xué)生的數(shù)據(jù)C.忽略學(xué)習(xí)困難學(xué)生的數(shù)據(jù)D.不做任何特殊處理3、在數(shù)據(jù)分析中,抽樣是獲取代表性數(shù)據(jù)的常用方法。假設(shè)要從一個(gè)大型數(shù)據(jù)庫中抽取樣本以估計(jì)總體特征,以下關(guān)于抽樣方法選擇的描述,正確的是:()A.采用簡單隨機(jī)抽樣,不考慮總體的結(jié)構(gòu)和特征B.隨意選擇抽樣方法,不考慮樣本的代表性和誤差C.根據(jù)總體的特點(diǎn)和研究目的,選擇合適的抽樣方法,如分層抽樣、系統(tǒng)抽樣等,并控制抽樣誤差D.為了方便,抽取少量樣本,不考慮樣本量對結(jié)果的影響4、對于數(shù)據(jù)分析中的數(shù)據(jù)融合,假設(shè)要整合來自多個(gè)數(shù)據(jù)源的數(shù)據(jù),這些數(shù)據(jù)源的數(shù)據(jù)格式、字段和含義可能不同。以下哪種數(shù)據(jù)融合方法可能更有助于實(shí)現(xiàn)數(shù)據(jù)的一致性和可用性?()A.基于規(guī)則的融合,制定明確的融合規(guī)則B.基于模型的融合,利用機(jī)器學(xué)習(xí)算法C.手動(dòng)整合數(shù)據(jù),逐個(gè)處理D.不進(jìn)行數(shù)據(jù)融合,分別分析各個(gè)數(shù)據(jù)源的數(shù)據(jù)5、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要構(gòu)建一個(gè)分類模型來預(yù)測客戶是否會(huì)流失,以下哪種算法可能對處理不平衡的數(shù)據(jù)集(流失客戶數(shù)量遠(yuǎn)少于未流失客戶)表現(xiàn)較好?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.隨機(jī)森林6、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉庫的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉庫可以整合來自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉庫中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉庫的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉庫只適用于大型企業(yè),對于中小企業(yè)來說沒有必要建設(shè)7、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是必不可少的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)轉(zhuǎn)換、數(shù)據(jù)集成等多個(gè)環(huán)節(jié)B.數(shù)據(jù)預(yù)處理的目的是提高數(shù)據(jù)的質(zhì)量,為后續(xù)分析提供更好的數(shù)據(jù)基礎(chǔ)C.數(shù)據(jù)預(yù)處理可以使用自動(dòng)化工具和算法,也可以手動(dòng)進(jìn)行處理D.數(shù)據(jù)預(yù)處理只需要在數(shù)據(jù)分析的開始階段進(jìn)行,一旦完成就不需要再進(jìn)行調(diào)整8、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的層次結(jié)構(gòu),以下哪種圖表較為合適?()A.樹形圖B.旭日圖C.和弦圖D.以上都是9、在數(shù)據(jù)分析中,數(shù)據(jù)安全是一個(gè)重要的問題。以下關(guān)于數(shù)據(jù)安全的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問題可能會(huì)導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等后果C.提高數(shù)據(jù)安全可以通過加密、備份和訪問控制等方法來實(shí)現(xiàn)D.數(shù)據(jù)安全只與數(shù)據(jù)的存儲(chǔ)和傳輸有關(guān),與數(shù)據(jù)分析的過程無關(guān)10、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過簡單排序就能實(shí)現(xiàn)B.為了預(yù)測未來銷售趨勢,應(yīng)該使用時(shí)間序列分析方法C.分析客戶地域分布對銷售的影響時(shí),無需考慮其他因素D.要評估不同營銷渠道的效果,只需比較銷售額的大小11、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量是一個(gè)關(guān)鍵問題。以下關(guān)于數(shù)據(jù)質(zhì)量的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量包括數(shù)據(jù)的準(zhǔn)確性、完整性、一致性和時(shí)效性等方面B.數(shù)據(jù)質(zhì)量問題可能會(huì)導(dǎo)致數(shù)據(jù)分析結(jié)果的錯(cuò)誤和不可靠C.提高數(shù)據(jù)質(zhì)量可以通過數(shù)據(jù)清洗、數(shù)據(jù)驗(yàn)證和數(shù)據(jù)監(jiān)控等方法來實(shí)現(xiàn)D.數(shù)據(jù)質(zhì)量只與數(shù)據(jù)的來源有關(guān),與數(shù)據(jù)分析的方法和工具無關(guān)12、對于一個(gè)時(shí)間序列數(shù)據(jù),若要預(yù)測未來幾個(gè)時(shí)間點(diǎn)的值,以下哪種模型較為適用?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.自回歸模型D.以上都可以13、在進(jìn)行地理數(shù)據(jù)分析時(shí),以下關(guān)于地理數(shù)據(jù)分析方法的描述,正確的是:()A.簡單的地圖繪制就能充分展示地理數(shù)據(jù)的特征B.空間聚類分析對于發(fā)現(xiàn)地理數(shù)據(jù)中的聚集模式?jīng)]有幫助C.地理加權(quán)回歸可以考慮空間異質(zhì)性對變量關(guān)系的影響D.不需要考慮地理坐標(biāo)系和投影的選擇,對分析結(jié)果影響不大14、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過多種方式進(jìn)行評估。以下關(guān)于數(shù)據(jù)分析方法有效性評估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過與實(shí)際情況進(jìn)行對比來評估B.數(shù)據(jù)分析方法的有效性可以通過與其他方法進(jìn)行比較來評估C.數(shù)據(jù)分析方法的有效性可以通過模擬數(shù)據(jù)進(jìn)行測試來評估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)15、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量評估是確保數(shù)據(jù)可靠性的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量評估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量評估可以使用多種指標(biāo),如準(zhǔn)確性、完整性、一致性等B.數(shù)據(jù)質(zhì)量評估可以通過手動(dòng)檢查和自動(dòng)化工具相結(jié)合的方式進(jìn)行C.數(shù)據(jù)質(zhì)量評估應(yīng)定期進(jìn)行,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問題D.數(shù)據(jù)質(zhì)量評估只需要在數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫之前進(jìn)行,之后就不需要再進(jìn)行評估了16、在建立回歸模型時(shí),如果數(shù)據(jù)存在多重共線性,以下哪種方法可以緩解這個(gè)問題?()A.對自變量進(jìn)行中心化和標(biāo)準(zhǔn)化B.增加樣本量C.剔除一些相關(guān)的自變量D.以上都是17、在數(shù)據(jù)預(yù)處理階段,對于含有大量缺失值的數(shù)據(jù),以下哪種處理方法不一定合適?()A.直接刪除含有缺失值的記錄B.用均值、中位數(shù)或眾數(shù)來填充缺失值C.通過建立模型來預(yù)測缺失值D.對缺失值不做任何處理18、在數(shù)據(jù)分析的倫理和法律方面,需要遵循一定的原則和規(guī)范。假設(shè)你處理的是包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)處理的做法,哪一項(xiàng)是最符合倫理和法律要求的?()A.在未獲得授權(quán)的情況下,將數(shù)據(jù)用于其他商業(yè)目的B.對數(shù)據(jù)進(jìn)行匿名化處理,確保無法追溯到個(gè)人身份C.忽視數(shù)據(jù)的隱私保護(hù),認(rèn)為分析結(jié)果更重要D.隨意分享數(shù)據(jù)給第三方機(jī)構(gòu)19、在數(shù)據(jù)分析的過程中,當(dāng)面對一個(gè)包含大量用戶消費(fèi)行為數(shù)據(jù)的數(shù)據(jù)集,需要找出影響用戶購買決策的關(guān)鍵因素,例如產(chǎn)品價(jià)格、促銷活動(dòng)、用戶評價(jià)等。假設(shè)數(shù)據(jù)的維度眾多,關(guān)系復(fù)雜,以下哪種數(shù)據(jù)分析方法可能最為有效?()A.描述性統(tǒng)計(jì)分析B.相關(guān)性分析C.因子分析D.回歸分析20、數(shù)據(jù)分析中的描述性統(tǒng)計(jì)能夠提供數(shù)據(jù)的基本特征。假設(shè)要分析一組學(xué)生的考試成績,以下關(guān)于描述性統(tǒng)計(jì)的描述,哪一項(xiàng)是不正確的?()A.均值可以反映成績的平均水平,但容易受到極端值的影響B(tài).中位數(shù)能夠較好地抵御極端值的干擾,代表數(shù)據(jù)的中間位置C.標(biāo)準(zhǔn)差越大,說明成績的分布越分散,但這并不一定意味著數(shù)據(jù)質(zhì)量差D.只要計(jì)算了均值和中位數(shù),就足以全面了解數(shù)據(jù)的分布情況,不需要考慮其他統(tǒng)計(jì)量二、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行假設(shè)檢驗(yàn)?請說明常見的假設(shè)檢驗(yàn)類型,如t檢驗(yàn)、方差分析等的適用場景和步驟,并舉例說明。2、(本題5分)在數(shù)據(jù)可視化方面,如何根據(jù)數(shù)據(jù)特點(diǎn)和分析目的選擇合適的圖表類型,如柱狀圖、折線圖、餅圖等?請舉例說明。3、(本題5分)數(shù)據(jù)倉庫在企業(yè)數(shù)據(jù)分析中起著重要作用,請說明數(shù)據(jù)倉庫的概念、架構(gòu)和建設(shè)過程中的關(guān)鍵步驟。4、(本題5分)闡述數(shù)據(jù)挖掘中的分類不平衡問題,說明解決該問題的方法和技術(shù),如代價(jià)敏感學(xué)習(xí),并舉例說明其應(yīng)用。5、(本題5分)闡述數(shù)據(jù)挖掘中的序列模式挖掘,說明其概念和應(yīng)用場景,如購物行為序列分析,并介紹相關(guān)算法。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某航空公司擁有乘客的訂票信息、行程安排、常旅客數(shù)據(jù)等。思考如何通過這些數(shù)據(jù)優(yōu)化航班安排和客戶忠誠度計(jì)劃。2、(本題5分)某社交媒體平臺積累了用戶的話題參與度、群組活動(dòng)數(shù)據(jù)、信息傳播路徑等。探討怎樣利用這些數(shù)據(jù)進(jìn)行社區(qū)運(yùn)營和內(nèi)容推薦優(yōu)化。3、(本題5分)一家互聯(lián)網(wǎng)公司收集了網(wǎng)站的訪問流量、頁面停留時(shí)間、用戶來源等數(shù)據(jù)。探討怎樣基于這些數(shù)據(jù)提升網(wǎng)站的用戶體驗(yàn)和轉(zhuǎn)化率。4、(本題5分)某在線旅游平臺掌握了不同目的地的旅游產(chǎn)品預(yù)訂數(shù)據(jù)、用戶評價(jià)、旅游淡旺季等信息。研究怎樣利用這些數(shù)據(jù)進(jìn)行目的地營銷和產(chǎn)品優(yōu)化。5、(本題5分)某電商企業(yè)收集了不同支付方式的使用數(shù)據(jù)、支付安全風(fēng)險(xiǎn)評估、用戶支付習(xí)慣等。分析如何依據(jù)這些數(shù)據(jù)優(yōu)化支付體驗(yàn)和降低支付風(fēng)險(xiǎn)。四、論述題(本大題共3個(gè)小題,共30分)1、(本題10分)在物流倉儲(chǔ)管理中,如何利用數(shù)據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論