難點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷1套附答案詳解_第1頁(yè)
難點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷1套附答案詳解_第2頁(yè)
難點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷1套附答案詳解_第3頁(yè)
難點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷1套附答案詳解_第4頁(yè)
難點(diǎn)解析-北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷1套附答案詳解_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期中測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計(jì)14分)1、直角三角形的面積為,斜邊上的中線為,則這個(gè)三角形周長(zhǎng)為(

)A. B.C. D.2、關(guān)于x的一元二次方程根的情況,下列說(shuō)法正確的是(

)A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根C.無(wú)實(shí)數(shù)根 D.無(wú)法確定3、為了解某地區(qū)九年級(jí)男生的身高情況,隨機(jī)抽取了該地區(qū)1000名九年級(jí)男生的身高數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計(jì)結(jié)果,隨機(jī)抽取該地區(qū)一名九年級(jí)男生,估計(jì)他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.874、如圖,把矩形OABC放入平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(10,8),點(diǎn)D是OC上一點(diǎn),將△BCD沿BD折疊,點(diǎn)C恰好落在OA上的點(diǎn)E處,則點(diǎn)D的坐標(biāo)是()A.(0,4) B.(0,5)C.(0,3) D.(0,2)5、某軌道列車共有3節(jié)車廂,設(shè)乘客從任意一節(jié)車廂上車的機(jī)會(huì)均等,某天甲、乙兩位乘客同時(shí)乘同一列軌道列車,則甲和乙從同一節(jié)車廂上車的概率是(

)A. B. C. D.6、如圖,點(diǎn)E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn).則下列說(shuō)法:①若,則四邊形EFGH為矩形;②若,則四邊形EFGH為菱形;③若AC與BD互相垂直且相等,則四邊形EFGH是正方形;④若四邊形EFGH是平行四邊形,則AC與BD互相平分.其中正確的個(gè)數(shù)是(

)A.1 B.2 C.3 D.47、如圖1,矩形中,點(diǎn)為的中點(diǎn),點(diǎn)沿從點(diǎn)運(yùn)動(dòng)到點(diǎn),設(shè),兩點(diǎn)間的距離為,,圖2是點(diǎn)運(yùn)動(dòng)時(shí)隨變化的關(guān)系圖象,則的長(zhǎng)為(

)A. B. C. D.二、多選題(3小題,每小題2分,共計(jì)6分)1、關(guān)于x的一元二次方程(k-1)x2+4x+k-1=0有兩個(gè)相等的實(shí)數(shù)根,則k的值為(

)A.1 B.0 C.3 D.-32、如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),連接AE,DF交于點(diǎn)N,將△ABE沿AE翻折,得到△AGE,AG交DF于點(diǎn)M,延長(zhǎng)EG交AD的延長(zhǎng)線于點(diǎn)H,連接CG,ME,取ME的中點(diǎn)為點(diǎn)O,連接NO,GO.則以下結(jié)論正確的有(

)A. B.C.△GEC為等邊三角形 D.3、下列方程中,有實(shí)數(shù)根的方程是()A.(x﹣1)2=2 B.(x+1)(2x﹣3)=0C.3x2﹣2x﹣1=0 D.x2+2x+4=0第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計(jì)20分)1、已知關(guān)于x的方程ax2+bx+1=0的兩根為x1=1,x2=2,則方程a(x+1)2+b(x+1)+1=0的兩根之和為_(kāi)_________.2、在四邊形ABCD中,ABCD,ADBC,添加一個(gè)條件________,即可判定該四邊形是菱形.3、一菱形的對(duì)角線長(zhǎng)分別為24cm和10cm,則此菱形的周長(zhǎng)為_(kāi)_______,面積為_(kāi)_______.4、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標(biāo)號(hào)分別為1,2,3,綠色球兩顆,標(biāo)號(hào)分別為1,2,若從五顆球中任取兩顆,則兩顆球的標(biāo)號(hào)之和不小于4的概率為_(kāi)_.5、有4根細(xì)木棒,長(zhǎng)度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個(gè)三角形的概率是__________.6、如圖所示,大正方形ABCD內(nèi)有一小正方形DEFG,對(duì)角線DF長(zhǎng)為6cm,已知小正方形DEFG向東北方向平移3cm就得到正方形D'E'BG',則大正方形ABCD的面積為_(kāi)___.7、將正方形OEFG放在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),若點(diǎn)E的坐標(biāo)為,則點(diǎn)G的坐標(biāo)為_(kāi)____.8、如果關(guān)于的一元二次方程有實(shí)數(shù)根,那么的取值范圍是___.9、如果一個(gè)直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個(gè)直角三角形的較小的內(nèi)角是________.10、如圖,在四邊形ABCD中,AC=BD=8,E、F、G、H分別是邊AB、BC、CD、DA的中點(diǎn),則EG2+FH2的值為_(kāi)____.四、解答題(6小題,每小題10分,共計(jì)60分)1、讀詩(shī)詞解題:(通過(guò)列方程式,算出周瑜去世時(shí)的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個(gè)位三,個(gè)位平方與壽符;哪位學(xué)子算得快,多少年華屬周瑜?2、如圖,已知在△ABC中AB=AC,AD是BC邊上的中線,E,G分別是AC,DC的中點(diǎn),F(xiàn)為DE延長(zhǎng)線上的點(diǎn),∠FCA=∠CEG.(1)求證:AD∥CF;(2)求證:四邊形ADCF是矩形.3、(1)計(jì)算:(2)解方程:2(x﹣3)2=504、某種病毒傳播非??欤绻?人被感染,經(jīng)過(guò)2輪感染后就會(huì)有81人被感染.(1)每輪感染中平均1人會(huì)感染幾人?(2)若病毒得不到有效控制,3輪感染后,被感染的人會(huì)不會(huì)超過(guò)700人?5、閱讀例題,解答問(wèn)題:例:解方程.解:原方程化為.令,原方程化成解得,(不合題意,舍去)...∴原方程的解是,請(qǐng)模仿上面的方法解方程:.6、如圖,在平行四邊形ABCD中,BE⊥AD,BF⊥CD,垂足分別為E,F(xiàn),且AE=CF.(1)求證:平行四邊形ABCD是菱形;(2)若DB=10,AB=13,求平行四邊形ABCD的面積.-參考答案-一、單選題1、D【解析】【分析】根據(jù)直角三角形的性質(zhì)求出斜邊長(zhǎng),根據(jù)勾股定理、完全平方公式計(jì)算即可.【詳解】解:設(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長(zhǎng)為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個(gè)三角形周長(zhǎng)為:,故選D.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.2、A【解析】【分析】先計(jì)算判別式,再進(jìn)行配方得到△=(k-1)2+4,然后根據(jù)非負(fù)數(shù)的性質(zhì)得到△>0,再利用判別式的意義即可得到方程總有兩個(gè)不相等的實(shí)數(shù)根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個(gè)不相等的實(shí)數(shù)根.故選:A.【考點(diǎn)】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;②當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;③當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.上面的結(jié)論反過(guò)來(lái)也成立.3、C【解析】【分析】先計(jì)算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計(jì)概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計(jì)抽查該地區(qū)一名九年級(jí)男生的身高不低于170cm的概率是0.68.故選:C.【考點(diǎn)】本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來(lái)越小,根據(jù)這個(gè)頻率穩(wěn)定性定理,可以用頻率的集中趨勢(shì)來(lái)估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來(lái)越精確.4、C【解析】【分析】由題意可得AO=BC=10,AB=OC=8,DE=CD,BE=BC=10,在中,由勾股定理可求得,OE=4,設(shè)OD=x,則DE=CD=8-x,然后在中,由勾股定理即可求得OD=3,繼而求得點(diǎn)D的坐標(biāo).【詳解】解:∵點(diǎn)B的坐標(biāo)為(10,8),∴AO=BC=10,AB=OC=8,由折疊的性質(zhì),可得:DE=CD,BE=BC=10,在中,由勾股定理得:,∴OE=AO-AE=10-6=4,設(shè)OD=x,則DE=CD=8-x,在中,由勾股定理得:,即:,解得:,∴OD=3,∴點(diǎn)D的坐標(biāo)是(0,3).故選:C.【考點(diǎn)】本題主要考查了矩形的性質(zhì)、折疊的性質(zhì)、勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】用樹(shù)狀圖表示所有等可能的結(jié)果,再求得甲和乙從同一節(jié)車廂上車的概率.【詳解】解:將3節(jié)車廂分別記為1號(hào)車廂,2號(hào)車廂,3號(hào)車廂,用樹(shù)狀圖表示所有等可能的結(jié)果,共有9種等可能的結(jié)果,其中,甲和乙從同一節(jié)車廂上車的有3可能,即甲和乙從同一節(jié)車廂上車的概率是,故選:C.【考點(diǎn)】本題考查概率,涉及畫樹(shù)狀圖求概率,是重要考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.6、A【解析】【分析】先根據(jù)三角形中位線定理證明四邊形EFGH是平行四邊形,然后根據(jù)菱形,矩形,正方形的判定進(jìn)行逐一判斷即可.【詳解】解:∵點(diǎn)E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點(diǎn),∴EH是△ABD的中位線,∴,,同理,∴EH=GF,GH=EF,∴四邊形EFGH是平行四邊形,①若AC=BD,則EH=GF=GH=EF,則四邊形EFGH是菱形,故①錯(cuò)誤;②若AC⊥BD,則EF⊥EH,∴平行四邊形EFGH是矩形,故②錯(cuò)誤;③若AC與BD互相垂直且相等,結(jié)合①②的判斷可知四邊形EFGH是正方形,故③正確;④若四邊形EFGH是平行四邊形,并不能推出AC與BD互相平分,故④錯(cuò)誤,故選A.【考點(diǎn)】本題主要考查了中點(diǎn)四邊形,三角形中位線定理,熟知中點(diǎn)四邊形的知識(shí)是解題的關(guān)鍵.7、C【解析】【分析】先利用圖2得出當(dāng)P點(diǎn)位于B點(diǎn)時(shí)和當(dāng)P點(diǎn)位于E點(diǎn)時(shí)的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點(diǎn)定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點(diǎn)位于B點(diǎn)時(shí),,即,當(dāng)P點(diǎn)位于E點(diǎn)時(shí),,即,則,∵,∴,即,∵∴,∵點(diǎn)為的中點(diǎn),∴,故選:C.【考點(diǎn)】本題考查了學(xué)生對(duì)函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點(diǎn)的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊(yùn)含了數(shù)形結(jié)合的思想方法.二、多選題1、C【解析】【分析】由方程有兩個(gè)相等的實(shí)數(shù)根,根據(jù)根的判別式可得到關(guān)于k的方程,則可求得k的值.【詳解】解:∵關(guān)于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個(gè)相等的實(shí)數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當(dāng)?>0時(shí),一元二次方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)?=0時(shí),一元二次方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)?<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根.2、ABD【解析】【分析】由正方形的性質(zhì)可得,則易證,然后可判定A選項(xiàng),由折疊的性質(zhì)及平行線的性質(zhì)可得B選項(xiàng),由題意易得,進(jìn)而根據(jù)三角形中線及等積法可判定D選項(xiàng).【詳解】解:∵四邊形ABCD是正方形,∴,AD∥BC,∴,∵點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),∴,∴(SAS),∴,∵,∴,∴,由折疊性質(zhì)可得,∴,∴,假設(shè)△GEC為等邊三角形成立,則有,∴,∴,∴,∴與AB=2BE相矛盾,故假設(shè)不成立;由折疊的性質(zhì)可知,∴,∴,∵M(jìn)E的中點(diǎn)為點(diǎn)O,∴,∴;綜上所述:正確的有ABD;故選ABD.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定、正方形的性質(zhì)、折疊性質(zhì)及等積法,熟練掌握全等三角形的性質(zhì)與判定、正方形的性質(zhì)、折疊性質(zhì)及等積法是解題的關(guān)鍵.3、ABC【解析】【分析】根據(jù)直接開(kāi)方法可確定A選項(xiàng)正確;根據(jù)因式分解法可確定B選項(xiàng)正確;根據(jù)方程的判別式,當(dāng)時(shí),方程有兩個(gè)不等的實(shí)數(shù)根,當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)時(shí),方程無(wú)實(shí)數(shù)根,可判斷C選項(xiàng)正確,D選項(xiàng)錯(cuò)誤.【詳解】A.,解得:,,方程有實(shí)數(shù)根,A選項(xiàng)正確;B.,解得:,,方程有實(shí)數(shù)根,B選項(xiàng)正確;C.,,,,方程有實(shí)數(shù)根,C選項(xiàng)正確;D.,,,,方程無(wú)實(shí)數(shù)根,D選項(xiàng)錯(cuò)誤.故選:ABC.【考點(diǎn)】本題考查了一元二次方程根的判斷,熟練掌握根的判別式是解題的關(guān)鍵.三、填空題1、1【解析】【分析】利用整體的思想以及根與系數(shù)的關(guān)系即可求出答案.【詳解】解:設(shè)x+1=t,方程a(x+1)2+b(x+1)+1=0的兩根分別是x3,x4,∴at2+bt+1=0,由題意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3.故答案為1.【考點(diǎn)】本題考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練運(yùn)用根與系數(shù)的關(guān)系,本題屬于基礎(chǔ)題型.2、AB=AD(答案不唯一)【解析】【分析】根據(jù)平行四邊形的判定證出四邊形ABCD是平行四邊形,根據(jù)菱形的判定證出即可.【詳解】解:添加的條件是AB=AD.理由如下:∵ABCD,ADBC,∴四邊形ABCD是平行四邊形,若AB=AD,∴四邊形ABCD是菱形.【考點(diǎn)】本題主要考查了菱形的判定、平行四邊形的判定等,能根據(jù)菱形的判定定理正確地添加條件是解此題的關(guān)鍵.3、

52cm

120cm2【解析】【分析】根據(jù)菱形對(duì)角線互相平分且垂直得到邊長(zhǎng),從而計(jì)算出周長(zhǎng),再根據(jù)面積公式計(jì)算出面積.【詳解】解:∵菱形的對(duì)角線長(zhǎng)分別為24cm和10cm,∴對(duì)角線的一半長(zhǎng)分別為12cm和5cm,∴菱形的邊長(zhǎng)為:=13cm,∴菱形的周長(zhǎng)為:13×4=52cm,面積為:×10×24=120cm2.故答案為:52cm,120cm2.【考點(diǎn)】此題主要考查學(xué)生對(duì)菱形的性質(zhì)的理解及運(yùn)用,屬于基礎(chǔ)題,關(guān)鍵是掌握菱形的面積等于對(duì)角線乘積的一半.4、##0.5【解析】【分析】畫樹(shù)狀圖,共有20個(gè)等可能的結(jié)果,兩顆球的標(biāo)號(hào)之和不小于4的結(jié)果有10個(gè),再由概率公式求解即可.【詳解】畫樹(shù)狀圖如圖:共有20個(gè)等可能的結(jié)果,兩顆球的標(biāo)號(hào)之和不小于4的結(jié)果有10個(gè),兩顆球的標(biāo)號(hào)之和不小于4的概率為,故答案為:.【考點(diǎn)】本題考查了列表法與樹(shù)狀圖法以及概率公式,正確畫出樹(shù)狀圖是解題的關(guān)鍵.5、【解析】【分析】根據(jù)題意,使用列舉法可得從有4根細(xì)木棒中任取3根的總共情況數(shù)目以及能搭成一個(gè)三角形的情況數(shù)目,根據(jù)概率的計(jì)算方法,計(jì)算可得答案.【詳解】根據(jù)題意,從有4根細(xì)木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個(gè)三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【考點(diǎn)】本題考查概率的計(jì)算方法,使用列舉法解題時(shí),注意按一定順序,做到不重不漏.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.6、

cm2【解析】【分析】先求出BD的長(zhǎng),再根據(jù)勾股定理求出AB的長(zhǎng),進(jìn)而可得出結(jié)論.【詳解】∵DF=6cm,已知小正方形DEFG向東北方向平移3cm就得到正方形D′E′BG′,∴BD=6+3=9.∵四邊形ABCD是正方形,∴2AB2=BD2,即AB2=BD2==(cm2).【考點(diǎn)】本題考查的知識(shí)點(diǎn)是平移的性質(zhì),解題關(guān)鍵是利用正方形性質(zhì)進(jìn)行解答.7、或【解析】【分析】先利用正方形的性質(zhì),利用旋轉(zhuǎn)畫出正方形OEFG,從而得到G點(diǎn)的坐標(biāo).【詳解】把EO繞E點(diǎn)順時(shí)針(或逆時(shí)針)旋轉(zhuǎn)90°得到對(duì)應(yīng)點(diǎn)為G(或G′),如圖,則G點(diǎn)的坐標(biāo)為(2,-3)或G′的坐標(biāo)為(﹣2,3),【考點(diǎn)】本題考查坐標(biāo)與圖形的變換,涉及旋轉(zhuǎn)、正方形的性質(zhì)等知識(shí),是重要考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.8、【解析】【分析】由一元二次方程根與系數(shù)的關(guān)鍵可得:從而列不等式可得答案.【詳解】解:關(guān)于的一元二次方程有實(shí)數(shù)根,故答案為:【考點(diǎn)】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關(guān)鍵.9、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個(gè)銳角,∴這個(gè)直角三角形的較小內(nèi)角是.故答案為:.【考點(diǎn)】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎(chǔ).10、64【解析】【分析】連接HE、EF、FG、GH,根據(jù)三角形中位線定理、菱形的判定定理得到平行四邊形HEFG是菱形,根據(jù)菱形的性質(zhì)、勾股定理計(jì)算即可.【詳解】解:連接HE、EF、FG、GH,∵E、F分別是邊AB、BC的中點(diǎn),∴EF=AC=4,EF∥AC,同理可得,HG=AC=4,HG∥AC,EH=BD=4,∴HG=EF,HG∥EF,∴四邊形HEFG為平行四邊形,∵AC=BD,∴EH=EF,∴平行四邊形HEFG是菱形,∴HF⊥EG,HF=2OH,EG=2OE,∴OE2+OH2=EH2=16∴EG2+FH2=(2OE)2+(2OH)2=4(OE2+OH2)=64,故答案為64.【考點(diǎn)】本題考查的是中點(diǎn)四邊形,掌握三角形中位線定理、菱形的判定和性質(zhì)定理是解題的關(guān)鍵.四、解答題1、周瑜去世的年齡為36歲.【解析】【分析】設(shè)周瑜逝世時(shí)的年齡的個(gè)位數(shù)字為x,則十位數(shù)字為x﹣3.根據(jù)題意建立方程求出其值就可以求出其結(jié)論.【詳解】設(shè)周瑜逝世時(shí)的年齡的個(gè)位數(shù)字為x,則十位數(shù)字為x﹣3.由題意得;10(x﹣3)+x=x2,解得:x1=5,x2=6當(dāng)x=5時(shí),周瑜的年齡25歲,非而立之年,不合題意,舍去;當(dāng)x=6時(shí),周瑜年齡為36歲,完全符合題意.答:周瑜去世的年齡為36歲.【考點(diǎn)】本題是一道數(shù)字問(wèn)題的運(yùn)用題,考查了列一元二次方程解實(shí)際問(wèn)題的運(yùn)用,在解答中理解而立之年是一個(gè)人30歲的年齡是關(guān)鍵.2、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】【分析】(1)先證EG是△ACD的中位線,得EG∥AD,再由∠FCA=∠CEG證出EG∥CF,即可得出結(jié)論;(2)先證△ADE≌△CFE(AAS),得AD=CF,則四邊形ADCF是平行四邊形,再由等腰三角形的在得∠ADC=90°,即可得出結(jié)論.【詳解】解:(1)證明:∵E,G分別是AC,DC的中點(diǎn),∴EG是△ACD的中位線,∴EG∥AD,∵∠FCA=∠CEG,∴EG∥CF,∴AD∥CF;(2)證明:由(1)得:AD∥CF,∴∠DAE=∠FCE,∠ADE=∠CFE,∵E是AC的中點(diǎn),∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF,∴四邊形ADCF是平行四邊形,又∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∴∠ADC=90°,∴平行四邊形ADCF是矩形.【考點(diǎn)】本題考查了矩形的判定、平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理等知識(shí);熟練掌握矩形的判定和平行四邊形的判定與性質(zhì)是解題的關(guān)鍵.3、(1)﹣;(2)x=8或﹣2.【解析】【分析】(1)直接利用立方根以及算術(shù)平方根的性質(zhì)化簡(jiǎn)得出答案;(2)直接利用平方根的定義計(jì)算得出答案.【詳解】(1)原式=2﹣3﹣(﹣1)=﹣1﹣+1=﹣;(2)2(x﹣3)2=50(x﹣3)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論