難點詳解四川峨眉第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷_第1頁
難點詳解四川峨眉第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷_第2頁
難點詳解四川峨眉第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷_第3頁
難點詳解四川峨眉第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷_第4頁
難點詳解四川峨眉第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練試卷_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川峨眉第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL2、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,53、尺規(guī)作圖:作角等于已知角.示意圖如圖所示,則說明的依據(jù)是()A.SSS B.SAS C.ASA D.AAS4、如圖,和全等,且,對應(yīng).若,,,則的長為()A.4 B.5 C.6 D.無法確定5、在△ABC中,若AB=3,BC=4,且周長為奇數(shù),則第三邊AC的長可以是()A.1 B.3 C.4 D.56、如圖,在中,,,AD平分交BC于點D,在AB上截取,則的度數(shù)為()A.30° B.20° C.10° D.15°7、根據(jù)下列已知條件,能畫出唯一的的是()A., B.,,C.,, D.,,8、如圖,點A在DE上,點F在AB上,△ABC≌△EDC,若∠ACE=50°,則∠DAB=()A.40° B.45° C.50° D.55°9、將一副三角板按如圖所示的方式放置,使兩個直角重合,則∠AFD的度數(shù)是()A.10° B.15° C.20° D.25°10、如圖,△ABC中,D,E分別為BC,AD的中點,若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.8第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設(shè)的面積為,的面積為,則______.2、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.3、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.4、如圖,△PBC的面積為5cm2,BP平分∠ABC,AP⊥BP于點P,則△ABC的面積為_____cm2.5、如圖,已知AC與BD相交于點P,ABCD,點P為BD中點,若CD=7,AE=3,則BE=_________.6、如圖,要測量水池的寬度,可從點出發(fā)在地面上畫一條線段,使,再從點觀測,在的延長線上測得一點,使,這時量得,則水池寬的長度是______m.7、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.8、如圖,在中,已知點,,分別為,,的中點,且,則陰影部分的面積______.9、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,己知DE=4,AD=6,則BE的長為___.10、如圖,點E,F(xiàn)分別為線段BC,DB上的動點,BE=DF.要使AE+AF最小值,若用作圖方式確定E,F(xiàn),則步驟是_____.三、解答題(6小題,每小題10分,共計60分)1、如圖,小明站在堤岸的A點處,正對他的S點停有一艘游艇.他想知道這艘游艇距離他有多遠(yuǎn),于是他沿堤岸走到電線桿B旁,接著再往前走相同的距離,到達(dá)C點.然后他向左直行,當(dāng)看到電線桿與游艇在一條直線上時停下來,此時他位于D點.小明測得C,D間的距離為90m,求在A點處小明與游艇的距離.2、如圖,已知,,求證:.3、如圖,點A,B,C,D在一條直線上,,,.求證:.4、如圖,已知AB=AC,BD=CE,證明△ABE≌△ACD.5、如圖,在中,、分別是上的高和中線,,,求的長.6、如圖,點B,F(xiàn),C,E在一條直線上,AB=DE,∠B=∠E,BF=CE.求證:AC=DF.-參考答案-一、單選題1、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.2、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.3、A【分析】利用基本作圖得到OD=OC=OD′=OC′,CD=C′D′,則根據(jù)全等三角形的判定方法可根據(jù)“SSS”可判斷△OCD≌△O′C′D′,然后根據(jù)全等三角形的性質(zhì)得到∠A′OB′=∠AOB.【詳解】解:由作法可得OD=OC=OD′=OC′,CD=C′D′,所以根據(jù)“SSS”可判斷△OCD≌△O′C′D′,所以∠A′OB′=∠AOB.故選:A.【點睛】本題考查了作圖﹣基本作圖和全等三角形的判定與性質(zhì),解題關(guān)鍵是熟練掌握基本作圖和全等三角形的判定定理.4、A【分析】全等三角形對應(yīng)邊相等,對應(yīng)角相等,根據(jù)題中信息得出對應(yīng)關(guān)系即可.【詳解】∵和全等,,對應(yīng)∴∴AB=DF=4故選:A.【點睛】本題考查了全等三角形的概念及性質(zhì),應(yīng)注意①對應(yīng)邊、對應(yīng)角是對兩個三角形而言的,指兩條邊、兩個角的關(guān)系,而對邊、對角是指同一個三角形的邊和角的位置關(guān)系②可以進(jìn)一步推廣到全等三角形對應(yīng)邊上的高相等,對應(yīng)角的平分線相等,對應(yīng)邊上的中線相等,周長及面積相等③全等三角形有傳遞性.5、C【分析】先求解的取值范圍,再利用周長為奇數(shù),可得為偶數(shù),從而可得答案.【詳解】解:AB=3,BC=4,即△ABC周長為奇數(shù),而為偶數(shù),或或不符合題意,符合題意;故選C【點睛】本題考查的是三角形三邊的關(guān)系,掌握“三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解本題的關(guān)鍵.6、B【分析】利用已知條件證明△ADE≌△ADC(SAS),得到∠DEA=∠C,根據(jù)外角的性質(zhì)可求的度數(shù).【詳解】解:∵AD是∠BAC的平分線,∴∠EAD=∠CAD在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠DEA=∠C,∵,∠DEA=∠B+,∴;故選:B【點睛】本題考查了全等三角形的性質(zhì)與判定,解決本題的關(guān)鍵是證明△ADE≌△ADC.7、C【分析】利用全等三角形的判定方法以及三角形三邊關(guān)系分別判斷得出即可.【詳解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能畫出唯一三角形,故本選項不符合題意;B.,,,不符合全等三角形的判定定理,不能畫出唯一的三角形,故本選項不符合題意;C.,,,符合全等三角形的判定定理ASA,能畫出唯一的三角形,故本選項符合題意;D.3+4<8,不符合三角形的三邊關(guān)系定理,不能畫出三角形,故本選項不符合題意;故選:C.【點睛】此題主要考查了全等三角形的判定以及三角形三邊關(guān)系,正確把握全等三角形的判定方法是解題關(guān)鍵.8、C【分析】首先根據(jù)△ABC≌△EDC得到∠E=∠BAC,然后由三角形外角的性質(zhì)求解即可.【詳解】解:∵△ABC≌△EDC,∴∠E=∠BAC,∵∠DAC=∠E+∠ACE,∴∠DAB+∠BAC=∠E+∠ACE,∴∠DAB=∠ACE=50°,故選:C.【點睛】此題考查了三角形全等的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握三角形全等的性質(zhì),三角形外角的性質(zhì).9、B【分析】根據(jù)三角板各角度數(shù)和三角形的外角性質(zhì)可求得∠BFE,再根據(jù)對頂角相等求解即可.【詳解】解:由題意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故選:B.【點睛】本題考查三角板各角的度數(shù)、三角形的外角性質(zhì)、對頂角相等,熟知三角板各角的度數(shù),掌握三角形的外角性質(zhì)是解答的關(guān)鍵.10、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個三角形的面積相等.二、填空題1、4【分析】利用三角形的中線的性質(zhì)證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關(guān)的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關(guān)鍵.2、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.3、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知全等三角形的判定定理.4、10【分析】根據(jù)已知條件證得△ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△ABC=2S△PBC,代入求出即可.【詳解】解:延長AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△ABC=2S陰影=10(cm2),故答案為:10.【點睛】本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:等底等高的三角形的面積相等.5、4【分析】由題意利用全等三角形的判定得出,進(jìn)而依據(jù)全等三角形的性質(zhì)得出進(jìn)行分析計算即可.【詳解】解:∵ABCD,∴,∵點P為BD中點,∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.6、160【分析】利用全等三角形的性質(zhì)解決問題即可.【詳解】解:,,在與中,,≌,,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,解題關(guān)鍵是理解題意,正確尋找全等三角形解決問題.7、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.8、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點,,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點,故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點撥】本題考查了三角形中線的性質(zhì),牢固掌握并會運用是解題關(guān)鍵.9、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.10、①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點【分析】按照①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點的步驟作圖即可得.【詳解】解:步驟是①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點;如圖,點即為所求.故答案為:①連接,作;②以點為圓心、長為半徑畫弧,交于點;③連接交于點;④以點為圓心、長為半徑畫弧,交于點.【點睛】本題考查了作一個角等于已知角、兩點之間線段最短、作線段、全等三角形的判定與性質(zhì)等知識點,熟練掌握尺規(guī)作圖的方法是解題關(guān)鍵.三、解答題1、在A點處小明與游艇的距離為90m.【分析】根據(jù)全等三角形的判定和性質(zhì)即可得到結(jié)論.【詳解】解:在與中,,答:在A點處小明與游艇的距離為90m.【點睛】本題考查的是全等三角形在實際生活中的運用,能根據(jù)題意證明△ABS≌△CBD是解答此題的關(guān)鍵.2、見解析【分析】先證明,然后利用AAS證明△BAC≌△EAF即可得到BC=EF.【詳解】解:∵,∴,即,在△BAC和△EAF中,,∴△BAC≌△EAF(AAS),∴BC=EF.【點睛】本題主要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論