難點(diǎn)解析-四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測評試題(含答案解析)_第1頁
難點(diǎn)解析-四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測評試題(含答案解析)_第2頁
難點(diǎn)解析-四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測評試題(含答案解析)_第3頁
難點(diǎn)解析-四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測評試題(含答案解析)_第4頁
難點(diǎn)解析-四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測評試題(含答案解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川遂寧市第二中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測評考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,E是正方形ABCD的邊DC上一點(diǎn),過點(diǎn)A作FA=AE交CB的延長線于點(diǎn)F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計(jì)算2、如圖,,,,則下列結(jié)論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④3、如圖,在中,AD、AE分別是邊BC上的中線與高,,CD的長為5,則的面積為()A.8 B.10 C.20 D.404、如圖,點(diǎn),在線段上,與全等,其中點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)頂點(diǎn),與交于點(diǎn),則等于()A. B. C. D.5、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm6、下列三角形與下圖全等的三角形是()A. B.C. D.7、如圖,和全等,且,對應(yīng).若,,,則的長為()A.4 B.5 C.6 D.無法確定8、如圖,若MB=ND,∠MBA=∠NDC,下列條件中不能判定的是()A.AM=CN B. C.AB=CD D.∠M=∠N9、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,510、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.7第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、已知a,b,c是△ABC的三邊,化簡:|a+b-c|+|b-a-c|=________.2、如圖,在中,,點(diǎn)D,E在邊BC上,,若,,則CE的長為______.3、如圖,線段AC與BD相交于點(diǎn)O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個(gè)條件是____________.(只需填一個(gè)條件即可)4、如圖,在中,,一條線段,P,Q兩點(diǎn)分別在線段和的垂線上移動,若以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,則的長為_________.5、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點(diǎn)O,分別過A、B兩點(diǎn)作AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,若AC=5,BD=3,則CD=_______.6、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.7、如圖,已知∠A=60°,∠B=20°,∠C=30°,則∠BDC的度數(shù)為_____.8、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點(diǎn)D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.9、如圖,三角形ABC的面積為1,,E為AC的中點(diǎn),AD與BE相交于P,那么四邊形PDCE的面積為______.10、如圖,A,B在一水池的兩側(cè),,,AC,BD交于點(diǎn)E,,若,則水池寬______m.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,直角坐標(biāo)系中,點(diǎn)B(a,0),點(diǎn)C(0,b),點(diǎn)A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點(diǎn),連接AF,OA,當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(AD不過點(diǎn)C)時(shí),證明:∠OAF的大小不變;(3)如圖2,B′與B關(guān)于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點(diǎn)T,過T作TQ⊥MN交y軸于點(diǎn)Q,當(dāng)t=2時(shí),求點(diǎn)Q的坐標(biāo).2、如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.(1)求證:BE=CD;(2)F為AD上一點(diǎn),DF=CD,連接BF,若AD=5,BE=2,求△BDG的面積3、如圖,點(diǎn)E、B在線段AB上,AE=DB,BC=EF,BC∥EF,求證:AC=DF.4、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,AB=DE,AC=DF,BF=EC.AB和DE的位置關(guān)系是什么?請說明你的理由.5、如圖,ABCF,E為DF的中點(diǎn),AB=20,CF=15,求BD的長度.6、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長-參考答案-一、單選題1、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點(diǎn)睛】本題考查的是小學(xué)涉及的正方形的性質(zhì),直角三角形全等的判定與性質(zhì),證明是解本題的關(guān)鍵.2、B【分析】根據(jù)全等三角形的性質(zhì)直接判定①②,則有,然后根據(jù)角的和差關(guān)系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯(cuò)誤,④正確,綜上所述:正確的有①②④;故選B.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.3、C【分析】根據(jù)三角形中線的性質(zhì)得出CB的長為10,再用三角形面積公式計(jì)算即可.【詳解】解:∵AD是邊BC上的中線,CD的長為5,∴CB=2CD=10,的面積為,故選:C.【點(diǎn)睛】本題考查了三角形中線的性質(zhì)和面積公式,解題關(guān)鍵是明確中線的性質(zhì)求出底邊長.4、D【分析】根據(jù)點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)頂點(diǎn),得到,根據(jù)全等三角形的性質(zhì)解答.【詳解】解:與全等,點(diǎn)與點(diǎn),點(diǎn)與點(diǎn)是對應(yīng)頂點(diǎn),,.故選:D【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟練掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等是解題的關(guān)鍵.5、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對各選項(xiàng)進(jìn)行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關(guān)系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點(diǎn)睛】本題主要考查三角形三邊關(guān)系,注意掌握判斷能否組成三角形的簡便方法是看較小的兩個(gè)數(shù)的和是否大于第三個(gè)數(shù).6、C【分析】根據(jù)已知的三角形求第三個(gè)內(nèi)角的度數(shù),由全等三角形的判定定理即可得出答案.【詳解】由題可知,第三個(gè)內(nèi)角的度數(shù)為,A.只有兩邊,故不能判斷三角形全等,故此選項(xiàng)錯(cuò)誤;B.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤;C.兩邊相等且夾角相等,故能判斷兩三角形全等,故此選項(xiàng)正確;D.兩邊夾的角度數(shù)不相等,故兩三角形不全等,故此選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查全等三角形的判定,掌握全等三角形的判定定理是解題的關(guān)鍵.7、A【分析】全等三角形對應(yīng)邊相等,對應(yīng)角相等,根據(jù)題中信息得出對應(yīng)關(guān)系即可.【詳解】∵和全等,,對應(yīng)∴∴AB=DF=4故選:A.【點(diǎn)睛】本題考查了全等三角形的概念及性質(zhì),應(yīng)注意①對應(yīng)邊、對應(yīng)角是對兩個(gè)三角形而言的,指兩條邊、兩個(gè)角的關(guān)系,而對邊、對角是指同一個(gè)三角形的邊和角的位置關(guān)系②可以進(jìn)一步推廣到全等三角形對應(yīng)邊上的高相等,對應(yīng)角的平分線相等,對應(yīng)邊上的中線相等,周長及面積相等③全等三角形有傳遞性.8、A【分析】根據(jù)兩個(gè)三角形全等的判定定理,有AAS、SSS、ASA、SAS四種.逐條驗(yàn)證.【詳解】解:A、根據(jù)條件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故A選項(xiàng)符合題意;B、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故B選項(xiàng)不符合題意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C選項(xiàng)不符合題意;D、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故D選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題重點(diǎn)考查了三角形全等的判定定理,兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本題是一道較為簡單的題目.9、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.10、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進(jìn)而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.二、填空題1、【分析】首先利用三角形的三邊關(guān)系得出,然后根據(jù)求絕對值的法則進(jìn)行化簡即可.【詳解】解:∵是的三條邊,∴,∴=.故答案為:.【點(diǎn)睛】熟悉三角形的三邊關(guān)系和求絕對值的法則,是解題的關(guān)鍵,注意,去絕對值后,要先添加括號,再去括號,這樣不容易出錯(cuò).|a+b-c|+|b-a-c|2、5【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,∴(ASA),∴,∵,,∴,∴;故答案為5.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點(diǎn)睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.4、6cm或12cm【分析】先根據(jù)題意得到∠BCA=∠PAQ=90°,則以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,由此利用全等三角形的性質(zhì)求解即可.【詳解】解:∵AX是AC的垂線,∴∠BCA=∠PAQ=90°,∴以A、B、C為頂點(diǎn)的三角形與以A、P、Q為頂點(diǎn)的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ兩種情況,當(dāng)△ACB≌△QAP,∴;當(dāng)△ACB≌△PAQ,∴,故答案為:6cm或12cm.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),熟知全等三角形的性質(zhì)是解題的關(guān)鍵.5、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關(guān)系即可求出CD的長度.【詳解】解:∵AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點(diǎn)睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.6、【分析】根據(jù)題意過點(diǎn)B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點(diǎn)B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點(diǎn)睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.7、110°【分析】延長BD交AC于點(diǎn)E,根據(jù)三角形的外角性質(zhì)計(jì)算,得到答案.【詳解】延長BD交AC于點(diǎn)E,∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,∴∠DEC=∠A+∠B=80°,則∠BDC=∠DEC+∠C=110°,故答案為:110°.【點(diǎn)睛】本題考查了三角形外角的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,作輔助線DE是解題的關(guān)鍵.8、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質(zhì)即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點(diǎn)睛】本題考查了三角形的面積和三角形中線的性質(zhì),關(guān)鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.9、【分析】連接CP.設(shè)△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點(diǎn),得△BDP的面積是2y,△APE的面積是x,進(jìn)而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設(shè)△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點(diǎn),∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點(diǎn)睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關(guān)系.等高的兩個(gè)三角形的面積比等于它們的底的比;等底的兩個(gè)三角形的面積比等于它們的高的比.10、80【分析】根據(jù)“”證明即可得出.【詳解】解:∵,,∴,在和中,,∴,∵,∴,故答案為:.【點(diǎn)睛】本題考查了全等三角形的實(shí)際應(yīng)用,熟練掌握全等三角形的判定定理以及性質(zhì)定理是解本題的關(guān)鍵.三、解答題1、(1)見解析(2)見解析(3)點(diǎn)坐標(biāo)為(,).【分析】(1)利用絕對值以及平方的非負(fù)性求出B、C的坐標(biāo),利用坐標(biāo)表示邊長,即可證明結(jié)論.(2)延長至點(diǎn),使,連接、,利用條件先證明,再根據(jù)全等三角形性質(zhì),進(jìn)一步證明,最后綜合條件得到為等腰直角三角形,進(jìn)而得到∠OAF為,是個(gè)定值,即可證得結(jié)論成立.(3)先連接、、、,過作交軸于,利用平行關(guān)系和邊相等證明,然后通過全等三角形性質(zhì)進(jìn)一步證明,再根據(jù)角與角之間的關(guān)系,求出,得到為等腰直角三角形,最后利用等腰三角形的性質(zhì),即可求出點(diǎn)坐標(biāo).【詳解】(1)證明:(a?t)2+|b?t|=0(t>0),,即,點(diǎn)B坐標(biāo)為(a,0),點(diǎn)C坐標(biāo)為(0,b),,故結(jié)論得證.(2)解:如圖所示:延長至點(diǎn),使,連接、,是的中點(diǎn),,在和中,,,,,,,,,,,,,,,在與中,.,,,,為等腰直角三角形.,故∠OAF的大小不變.(3)解:連接、、、,過作交軸于.如下圖所示:和關(guān)于軸對稱,在軸上.,,,,.,,,,在和中,.,又,,垂直平分,,在和中,.,.,故.,.為等腰直角三角形..故點(diǎn)坐標(biāo)為(,).【點(diǎn)睛】本題主要是考查了對稱點(diǎn)的坐標(biāo)關(guān)系以及利用坐標(biāo)求解幾何圖形,熟練掌握垂直平分線、平行線以及等腰三角形、全等三角形的判定和性質(zhì),是解決本題的關(guān)系.2、(1)見解析;(2)【分析】(1)根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質(zhì)求出∠ACD=∠CBE,根據(jù)AAS證明△BCE≌△CAD,則可得出結(jié)論;(2)證明△FDG≌△BEG(AAS),由全等三角形的性質(zhì)得出EG=DG,求出DG的長,則可得出答案.【詳解】解:(1)證明:∵∠ACB=90°,BE⊥CE,AD⊥CE∴∠ECB+∠ACD=90°,∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)證明:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵DF=CD∴FD=BE∵AD⊥CE,BE⊥CE,∴BE∥AD,∴∠BEG=∠FDG,在△FDG和△BEG中,,∴△FDG≌△BEG(AAS),∴EG=DG,∵AD=5,BE=2,∴DG=DE=(CE-CD)=×(5-2)=,∴S△BDG

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論