難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(詳解)_第1頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(詳解)_第2頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(詳解)_第3頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(詳解)_第4頁
難點(diǎn)詳解人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試試題(詳解)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,Rt△ACB中,∠ACB=90°,△ACB的角平分線AD,BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②AD=PF+PH;③DH平分∠CDE;④S四邊形ABDE=S△ABP;⑤S△APH=S△ADE,其中正確的結(jié)論有(

)個(gè)A.2 B.3 C.4 D.52、如圖,在和中,,則下列結(jié)論中錯(cuò)誤的是(

)A. B. C. D.E為BC中點(diǎn)3、如圖,在和中,點(diǎn),,,在同一直線上,,,只添加一個(gè)條件,能判定的是(

)A. B. C. D.4、如圖,在中,,,點(diǎn)E在BC的延長(zhǎng)線上,的平分線BD與的平分線CD相交于點(diǎn)D,連接AD,則下列結(jié)論中,正確的是A. B. C. D.5、如圖,△ABC中,已知∠B=∠C,點(diǎn)E,F(xiàn),P分別是AB,AC,BC上的點(diǎn),且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC中,AD⊥BC于點(diǎn)D,過A作AEBC,且AE=AB,AB上有一點(diǎn)F,連接EF.若EF=AC,CD=4BD,則=_____.2、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,,,請(qǐng)?zhí)砑右粋€(gè)條件,使≌,這個(gè)添加的條件可以是______(只需寫一個(gè),不添加輔助線).3、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點(diǎn)F,G為△ABC外一點(diǎn),∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號(hào)).4、如圖是教科書中的一個(gè)片段,由畫圖我們可以得到△,判定這兩個(gè)三角形全等的依據(jù)是__.(1)畫;(2)分別以點(diǎn),為圓心,線段,長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn);(3)連接線段,.5、如圖所示的圖案是由全等的圖形拼成的,其中AD=0.5,BC=1,則AF=______.三、解答題(5小題,每小題10分,共計(jì)50分)1、已知Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)E為△ABC內(nèi)一點(diǎn),連接AE,CE,CE⊥AE,過點(diǎn)B作BD⊥AE,交AE的延長(zhǎng)線于D.(1)如圖1,求證BD=AE;(2)如圖2,點(diǎn)H為BC中點(diǎn),分別連接EH,DH,求∠EDH的度數(shù);(3)如圖3,在(2)的條件下,點(diǎn)M為CH上的一點(diǎn),連接EM,點(diǎn)F為EM的中點(diǎn),連接FH,過點(diǎn)D作DG⊥FH,交FH的延長(zhǎng)線于點(diǎn)G,若GH:FH=6:5,△FHM的面積為30,∠EHB=∠BHG,求線段EH的長(zhǎng).2、如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高.(1)求證:AD垂直平分EF;(2)若AB+AC=10,S△ABC=15,求DE的長(zhǎng).3、如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求證:△BCE≌△DCF;(2)求證:AB+AD=2AE.4、在中,,,為直線上一點(diǎn),連接,過點(diǎn)作交于點(diǎn),交于點(diǎn),在直線上截取,連接.(1)當(dāng)點(diǎn),都在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖②;當(dāng)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)在線段的延長(zhǎng)線上時(shí),如圖③,直接寫出線段,,之間的數(shù)量關(guān)系,不需要證明.5、小明和小亮在學(xué)習(xí)探索三角形全等時(shí),碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請(qǐng)你幫他們解答,并說明理由.(2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長(zhǎng)線上任取一點(diǎn)P,也有第2題類似的結(jié)論.請(qǐng)你幫他畫出圖形,并證明結(jié)論.-參考答案-一、單選題1、B【解析】【分析】①正確.利用三角形內(nèi)角和定理以及角平分線的定義即可解決問題.②正確.證明△ABP≌△FBP,推出PA=PF,再證明△APH≌△FPD,推出PH=PD即可解決問題.③錯(cuò)誤.利用反證法,假設(shè)成立,推出矛盾即可.④錯(cuò)誤,可以證明S四邊形ABDE=2S△ABP.⑤正確.由DH∥PE,利用等高模型解決問題即可.【詳解】解:在△ABC中,AD、BE分別平分∠BAC、∠ABC∵∠ACB=90°∴∠A+∠B=90°又∵AD、BE分別平分∠BAC、∠ABC∴∠BAD+∠ABE=(∠A+∠B)=45°∴∠APB=135°,故①正確∴∠BPD=45°又∵PF⊥AD∴∠FPB=90°+45°=135°∴∠APB=∠FPB又∵∠ABP=∠FBPBP=BP∴△ABP≌△FBP(ASA)∴∠BAP=∠BFP,AB=FB,PA=PF在△APH和△FPD中∴△APH≌△FPD(ASA)∴PH=PD∴AD=AP+PD=PF+PH.故②正確∵△ABP≌△FBP,△APH≌△FPD∴S△APB=S△FPB,S△APH=S△FPD,PH=PD∵∠HPD=90°∴∠HDP=∠DHP=45°=∠BPD∴HD∥EP∴S△EPH=S△EPD∴S△APH=S△AED,故⑤正確∵S四邊形ABDE=S△ABP+S△AEP+S△EPD+S△PBD=S△ABP+(S△AEP+S△EPH)+S△PBD=S△ABP+S△APH+S△PBD=S△ABP+S△FPD+S△PBD=S△ABP+S△FBP=2S△ABP,故④不正確若DH平分∠CDE,則∠CDH=∠EDH∵DH∥BE∴∠CDH=∠CBE=∠ABE∴∠CDE=∠ABC∴DE∥AB,這個(gè)顯然與條件矛盾,故③錯(cuò)誤故選B.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理,三角形的面積等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考??碱}型.2、D【解析】【分析】首先證明,推出,,由,推出,推出,即可一一判斷.【詳解】解:∵,∴和為直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正確,故選:D.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì).3、B【解析】【分析】根據(jù)三角形全等的判定做出選擇即可.【詳解】A、,不能判斷,選項(xiàng)不符合題意;B、,利用SAS定理可以判斷,選項(xiàng)符合題意;C、,不能判斷,選項(xiàng)不符合題意;D、,不能判斷,選項(xiàng)不符合題意;故選:B.【考點(diǎn)】本題考查三角形全等的判定,根據(jù)SSS、SAS、ASA、AAS判斷三角形全等,找出三角形全等的條件是解答本題的關(guān)鍵.4、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判斷出AC≠AB,根據(jù)三角形內(nèi)角和定理可求出∠BAC的度數(shù),根據(jù)鄰補(bǔ)角定義可求出∠ACE度數(shù),由BD平分∠ABC,CD平分∠ACE,根據(jù)角平分線的定義以及三角形外角的性質(zhì)可求得∠BDC的度數(shù),繼而根據(jù)三角形內(nèi)角和定理可求得∠DOC的度數(shù),據(jù)此對(duì)各選項(xiàng)進(jìn)行判斷即可得.【詳解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故選B.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,等腰三角形判定,角平分線的定義等,熟練掌握角平分線的定義以及三角形內(nèi)角和定理是解本題的關(guān)鍵.5、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.二、填空題1、【解析】【分析】在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長(zhǎng)線于點(diǎn)H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長(zhǎng)線于點(diǎn)H,∵AD⊥BC于點(diǎn)D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點(diǎn)】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識(shí)與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.2、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據(jù)等式的性質(zhì)可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點(diǎn)】本題主要考查了三角形全等的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.3、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項(xiàng)的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,4、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點(diǎn)】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識(shí),解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識(shí)解決問題.5、6【解析】【分析】由圖形知,所示的圖案是由梯形ABCD和七個(gè)與它全等的梯形拼接而成,根據(jù)全等則重合的性質(zhì)求解即可.【詳解】解:由題可知,圖中有8個(gè)全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.故答案為:6.【考點(diǎn)】考查了全等圖形的性質(zhì),本題利用了全等形圖形一定重合的性質(zhì)求解,做題的關(guān)鍵是找準(zhǔn)相互重合的對(duì)應(yīng)邊.三、解答題1、(1)見解析;(2)∠EDH=45°;(3)EH=10.【解析】【分析】(1)根據(jù)全等三角形的判定得出△CAE≌△ABD,進(jìn)而利用全等三角形的性質(zhì)得出AE=BD即可;(2)根據(jù)全等三角形的判定得出△AEH≌△BDH,進(jìn)而利用全等三角形的性質(zhì)解答即可;(3)過點(diǎn)M作MS⊥FH于點(diǎn)S,過點(diǎn)E作ER⊥FH,交HF的延長(zhǎng)線于點(diǎn)R,過點(diǎn)E作ET∥BC,根據(jù)全等三角形判定和性質(zhì)解答即可.【詳解】證明:(1)∵CE⊥AE,BD⊥AE,∴∠AEC=∠ADB=90°,∵∠BAC=90°,∴∠ACE+CAE=∠CAE+∠BAD=90°,∴∠ACE=∠BAD,在△CAE與△ABD中∴△CAE≌△ABD(AAS),∴AE=BD;(2)連接AH∵AB=AC,BH=CH,∴∠BAH=,∠AHB=90°,∴∠ABH=∠BAH=45°,∴AH=BH,∵∠EAH=∠BAH﹣∠BAD=45°﹣∠BAD,∠DBH=180°﹣∠ADB﹣∠BAD﹣∠ABH=45°﹣∠BAD,∴∠EAH=∠DBH,在△AEH與△BDH中∴△AEH≌△BDH(SAS),∴EH=DH,∠AHE=∠BHD,∴∠AHE+∠EHB=∠BHD+∠EHB=90°即∠EHD=90°,∴∠EDH=∠DEH=;(3)過點(diǎn)M作MS⊥FH于點(diǎn)S,過點(diǎn)E作ER⊥FH,交HF的延長(zhǎng)線于點(diǎn)R,過點(diǎn)E作ET∥BC,交HR的延長(zhǎng)線于點(diǎn)T.∵DG⊥FH,ER⊥FH,∴∠DGH=∠ERH=90°,∴∠HDG+∠DHG=90°∵∠DHE=90°,∴∠EHR+∠DHG=90°,∴∠HDG=∠HER在△DHG與△HER中∴△DHG≌△HER(AAS),∴HG=ER,∵ET∥BC,∴∠ETF=∠BHG,∠EHB=∠HET,∠ETF=∠FHM,∵∠EHB=∠BHG,∴∠HET=∠ETF,∴HE=HT,在△EFT與△MFH中,∴△EFT≌△MFH(AAS),∴HF=FT,∴,∴ER=MS,∴HG=ER=MS,設(shè)GH=6k,F(xiàn)H=5k,則HG=ER=MS=6k,,k=,∴FH=5,∴HE=HT=2HF=10.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會(huì)利用數(shù)形結(jié)合的思想思考問題,屬于壓軸題.2、(1)見解析;(2)【解析】【分析】(1)由角平分線的性質(zhì)得DE=DF,再根據(jù)HL證明Rt△AED≌Rt△AFD,得AE=AF,從而證明結(jié)論;(2)根據(jù)DE=DF,得,代入計(jì)算即可.【詳解】(1)證明:∵AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高,∴DE=DF,在Rt△AED與Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵DE=DF,∴AD垂直平分EF;(2)解:∵DE=DF,∴,∵AB+AC=10,∴DE=3.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),角平分線的性質(zhì),解題的關(guān)鍵是掌握這些知識(shí)點(diǎn).3、詳見解析【解析】【分析】(1)由角平分線定義可證△BCE≌△DCF(HL);(2)先證Rt△FAC≌Rt△EAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE.【詳解】(1)證明:∵AC是角平分線,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論