難點(diǎn)詳解重慶市大學(xué)城第一中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題測(cè)試試卷(詳解版)_第1頁
難點(diǎn)詳解重慶市大學(xué)城第一中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題測(cè)試試卷(詳解版)_第2頁
難點(diǎn)詳解重慶市大學(xué)城第一中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題測(cè)試試卷(詳解版)_第3頁
難點(diǎn)詳解重慶市大學(xué)城第一中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題測(cè)試試卷(詳解版)_第4頁
難點(diǎn)詳解重慶市大學(xué)城第一中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題測(cè)試試卷(詳解版)_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶市大學(xué)城第一中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形專題測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,△ABC中,D,E分別為BC,AD的中點(diǎn),若△CDE的面積使2,則△ABC的面積是()A.4 B.5 C.6 D.82、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點(diǎn)作位置不同的格點(diǎn)的三角形與△ABC全等,這樣格點(diǎn)三角形最多可以畫出()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)3、已知三角形的兩邊長分別為和,則下列長度的四條線段中能作為第三邊的是()A. B. C. D.4、如圖,D為∠BAC的外角平分線上一點(diǎn),過D作DE⊥AC于E,DF⊥AB交BA的延長線于F,且滿足∠FDE=∠BDC,則下列結(jié)論:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、如圖,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列條件中的一個(gè)仍無法證明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE6、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.7、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,78、如圖,在正方形ABCD中,E,F(xiàn)分別為AD,CD上的點(diǎn),且AE=CF,則下列說法正確的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠29、有兩根長度分別為7cm,11cm的木棒,下面為第三根的長度,則可圍成一個(gè)三角形框架的是()A.3cm B.4cm C.9cm D.19cm10、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,△ABC的面積等于35,AE=ED,BD=3DC,則圖中陰影部分的面積等于_______2、如圖,在△ABC中,∠ACB=90°,AC=8,BC=10,點(diǎn)P從點(diǎn)A出發(fā)沿線段AC以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā)沿折線BC﹣CA以每秒3個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).分別過P、Q兩點(diǎn)作PE⊥l于E,QF⊥l于F,當(dāng)△PEC與△QFC全等時(shí),CQ的長為______.3、如圖,∠AOB=90°,OA=OB,直線l經(jīng)過點(diǎn)O,分別過A、B兩點(diǎn)作AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,若AC=5,BD=3,則CD=_______.4、如圖,直線ED把分成一個(gè)和四邊形BDEC,的周長一定大于四邊形BDEC的周長,依據(jù)的原理是____________________________________.5、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D,己知DE=4,AD=6,則BE的長為___.6、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°至AB′,連接B'C,則△AB′C的面積為_____.7、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).8、如圖,已知,請(qǐng)?zhí)砑右粋€(gè)條件,使得,則添加的條件可以為___(只填寫一個(gè)即可).9、如圖,AE與BD相交于點(diǎn)C,AC=EC,BC=DC,AB=5cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B方向以2cm/s的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿D→E方向以1cm/s的速度運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā).當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當(dāng)線段PQ經(jīng)過點(diǎn)C時(shí),t=___s.10、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動(dòng)木架,觀察圖②中的變動(dòng)情況,說一說,其中所蘊(yùn)含的數(shù)學(xué)原理是_____.三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,AB是⊙O的直徑,CD是⊙O中任意一條弦,求證:AB≥CD.2、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點(diǎn)M,N分別在等邊的邊上,且,,交于點(diǎn)Q.求證:.同學(xué)們利用有關(guān)知識(shí)完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請(qǐng)你給出答案并說明理由.(2)若將題中的點(diǎn)M,N分別移動(dòng)到的延長線上,是否仍能得到?請(qǐng)你畫出圖形,給出答案并說明理由.3、證明“全等三角形的對(duì)應(yīng)角的平分線相等”.要求:將已有圖形根據(jù)題意補(bǔ)充完整,并據(jù)此寫出己知、求證和證明過程.4、在解決線段數(shù)量關(guān)系問題中,如果條件中有角平分線,經(jīng)常采用下面構(gòu)造全等三角形的解決思路,如:在圖1中,若C是∠MON的平分線OP上一點(diǎn),點(diǎn)A在OM上,此時(shí),在ON上截取OB=OA,連接BC,根據(jù)三角形全等判定(SAS),容易構(gòu)造出全等三角形OBC和OAC,參考上面的方法,解答下列問題,如圖2,在非等邊ABC中,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,且AD、CE交于點(diǎn)F.(1)求∠AFC的度數(shù);(2)求證:AC=AE+CD.5、如圖,(1),已知△ABC中,∠BAC=90°,,AE是過點(diǎn)A的一條直線,且B,C在A,E的異側(cè),于點(diǎn)D,于點(diǎn)E(1)試說明:;(2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖(2)位置時(shí),其余條件不變,問BD與DE,CE的關(guān)系如何?請(qǐng)直接寫出結(jié)果;6、如圖,已知點(diǎn)B,F(xiàn),C,E在同一直線上,AB∥DE,BF=CE,AB=ED,求證:∠A=∠D.-參考答案-一、單選題1、D【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可求出的面積.【詳解】∵AD是BC上的中線,∴,∵CE是中AD邊上的中線,∴,∴,即,∵的面積是2,∴.故選:D.【點(diǎn)睛】本題考查的是三角形的中線的性質(zhì),三角形一邊上的中線把原三角形分成的兩個(gè)三角形的面積相等.2、C【分析】觀察圖形可知:DE與AC是對(duì)應(yīng)邊,B點(diǎn)的對(duì)應(yīng)點(diǎn)在DE上方兩個(gè),在DE下方兩個(gè)共有4個(gè)滿足要求的點(diǎn),也就有四個(gè)全等三角形.【詳解】根據(jù)題意,運(yùn)用“SSS”可得與△ABC全等的三角形有4個(gè),線段DE的上方有兩個(gè)點(diǎn),下方也有兩個(gè)點(diǎn),如圖.故選C.【點(diǎn)睛】本題考查三角形全等的判定方法,解答本題的關(guān)鍵是按照順序分析,要做到不重不漏.3、C【分析】根據(jù)三角形的三邊關(guān)系可得,再解不等式可得答案.【詳解】解:設(shè)三角形的第三邊為,由題意可得:,即,故選:C.【點(diǎn)睛】本題主要考查了三角形的三邊關(guān)系,解題的關(guān)鍵是掌握三角形兩邊之和大于第三邊;三角形的兩邊差小于第三邊.4、D【分析】利用AAS證明△CDE≌△BDF,可判斷①④正確;再利用HL證明Rt△ADE≌Rt△ADF,可判斷②正確;由∠BAC=∠EDF,∠FDE=∠BDC,可判斷③正確.【詳解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE與△BDF中,,∴△CDE≌△BDF(AAS),故①正確;∴CE=BF,在Rt△ADE與Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正確;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正確;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正確故選:D.【點(diǎn)睛】本題主要考查了全等三角形的判定及性質(zhì),外角的性質(zhì)等,熟悉掌握全等三角形的判定方法,靈活尋找條件是解題的關(guān)鍵.5、A【分析】根據(jù)AF=DC求出AC=DF,再根據(jù)全等三角形的判定定理逐個(gè)判斷即可.【詳解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本選項(xiàng)符合題意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本選項(xiàng)不符合題意;故選:A.【點(diǎn)睛】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.6、D【分析】已知條件AB=AC,還有公共角∠A,然后再結(jié)合選項(xiàng)所給條件和全等三角形的判定定理進(jìn)行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關(guān)鍵.7、C【分析】根據(jù)組成三角形的三邊關(guān)系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項(xiàng)錯(cuò)誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項(xiàng)錯(cuò)誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項(xiàng)正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系,在一個(gè)三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.8、C【分析】由“SAS”可證△ABE≌△CBF,可得∠AEB=∠2,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故選:C.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),證明三角形全等是解題的關(guān)鍵.9、C【分析】已知兩邊,則第三邊的長度應(yīng)是大于兩邊的差且小于兩邊的和,這樣就可求出第三邊長的范圍.【詳解】解:依題意得:11﹣7<x<7+11,即4<x<18,9cm適合.故選:C.【點(diǎn)睛】本題考查三角形三邊關(guān)系,是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.10、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形的個(gè)數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個(gè)值.則對(duì)應(yīng)的三角形有3個(gè).故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.二、填空題1、15【分析】連接DF,根據(jù)AE=ED,BD=3DC,可得,,,,然后設(shè)△AEF的面積為x,△BDE的面積為y,則,,,,再由△ABC的面積等于35,即可求解.【詳解】解:如圖,連接DF,∵AE=ED,∴,,∵BD=3DC,∴,設(shè)△AEF的面積為x,△BDE的面積為y,則,,,,∵△ABC的面積等于35,∴,解得:.故答案為:15【點(diǎn)睛】本題主要考查了與三角形中線有關(guān)的面積問題,根據(jù)題意得到,,,是解題的關(guān)鍵.2、7或3.5【分析】分兩種情況:(1)當(dāng)P在AC上,Q在BC上時(shí);(2)當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí);【詳解】解:當(dāng)P在AC上,Q在BC上時(shí),∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC與△QFC全等,∴此時(shí)是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;當(dāng)P在AC上,Q在AC上時(shí),即P、Q重合時(shí),則CQ=PC,由題意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,綜上,當(dāng)△PEC與△QFC全等時(shí),滿足條件的CQ的長為7或3.5,故答案為:7或3.5.【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì),根據(jù)題意得出關(guān)于的方程是解題的關(guān)鍵.3、2【分析】首先根據(jù)同角的余角相等得到∠A=∠BOD,然后利用AAS證明△ACO≌△ODB,根據(jù)全等三角形對(duì)應(yīng)邊相等得出AC=OD=5,OC=BD=3,根據(jù)線段之間的數(shù)量關(guān)系即可求出CD的長度.【詳解】解:∵AC⊥l于點(diǎn)C,BD⊥l于點(diǎn)D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案為:2.【點(diǎn)睛】此題考查了全等三角形的性質(zhì)和判定,同角的余角相等,解題的關(guān)鍵是根據(jù)題意證明△ACO≌△ODB.4、三角形兩邊之和大于第三邊【分析】表示出和四邊形BDEC的周長,再結(jié)合中的三邊關(guān)系比較即可.【詳解】解:的周長=四邊形BDEC的周長=∵在中∴即的周長一定大于四邊形BDEC的周長,∴依據(jù)是:三角形兩邊之和大于第三邊;故答案為三角形兩邊之和大于第三邊【點(diǎn)睛】本題考查了三角形三邊關(guān)系定理,關(guān)鍵是熟悉三角形兩邊之和大于第三邊的知識(shí)點(diǎn).5、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點(diǎn)睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.6、【分析】根據(jù)題意過點(diǎn)B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點(diǎn)B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點(diǎn)睛】本題主要考查三角形全等的判定與性質(zhì)和旋轉(zhuǎn)的性質(zhì)以及勾股定理,根據(jù)題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關(guān)鍵.7、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.8、或【分析】根據(jù)全等三角形的判定方法即可解決問題.【詳解】解:由題意,,根據(jù),可以添加,使得,根據(jù),可以添加,使得.故答案為:或【點(diǎn)睛】本題主要考查了全等三角形的判定,熟練掌握全等三角形的判定方法——邊角邊、角邊角、角角邊、邊邊邊是解題的關(guān)鍵.9、2【分析】(1)根據(jù)路程=速度×?xí)r間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當(dāng)PQ經(jīng)過點(diǎn)C時(shí),可證得△ACP≌△ECQ,則有AP=EQ,進(jìn)而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當(dāng)PQ經(jīng)過點(diǎn)C時(shí),∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點(diǎn)睛】本題考查全等三角形的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)是解答的關(guān)鍵.10、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊(yùn)含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點(diǎn)睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.三、解答題1、見解析【分析】連接,,再根據(jù)三角形的三邊關(guān)系即可得出結(jié)論.【詳解】連接,,,,.當(dāng)且僅當(dāng)CD過圓心O時(shí),取“=”號(hào),.【點(diǎn)睛】本題考查的是三角形的三邊關(guān)系,解題的關(guān)鍵是熟知三角形任意兩邊之和大于第三邊.2、(1)仍是真命題,證明見解析(2)仍能得到,作圖和證明見解析【分析】(1)由角邊角得出和全等,對(duì)應(yīng)邊相等即可.(2)由(1)問可知BM=CN,故可由邊角邊得出和全等,對(duì)應(yīng)角相等,即可得出.(1)∵∴∵∴在和中有∴∴故結(jié)論仍為真命題.(2)∵BM=CN∴CM=AN∵AB=AC,,在和中有∴∴∴故仍能得到,如圖所示【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),從判定兩個(gè)三角形全等的方法可知,要判定兩個(gè)三角形全等,需要知道這兩個(gè)三角形分別有三個(gè)元素(其中至少一個(gè)元素是邊)對(duì)應(yīng)相等,這樣就可以利用題目中的已知邊角迅速、準(zhǔn)確地確定要補(bǔ)充的邊角,有目的地完善三角形全等的條件,從而得到判定兩個(gè)三角形全等的思路.3、見解析.【分析】根據(jù)圖形和命題寫出已知求證,根據(jù)全等三角形的性質(zhì)得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根據(jù)角平分線的定義得出∠BAD=∠B′A′D′,根據(jù)全等三角形的判定得出△BAD≌△B′A′D′,再根據(jù)全等三角形的性質(zhì)得出答案即可.【詳解】解:如圖,已知:△ABC≌△A′B′C′,AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,求證:AD=A′D′,證明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分別是∠BAC和∠B′A′C′的角平分線,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【點(diǎn)睛】本題考查了全等三角形的判定定理和性質(zhì)定理,能求出△BAD≌△B′A′D′是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,兩直角三角形全等還有HL,全等三角形的對(duì)應(yīng)邊相等.4、(1)120°;(2)見詳解.【分析】(1)根據(jù)題意在AC上截取AG=AE,連接FG,進(jìn)而根據(jù)角平分線的性質(zhì)和三角形內(nèi)角和180°進(jìn)行分析計(jì)算即可;(2)由題意在(1)基礎(chǔ)上根據(jù)平角等于180°推出∠CFG=60°,然后利用“角邊角”證明△CFG和△CFD全等,進(jìn)而根據(jù)全等三角形對(duì)應(yīng)邊相等可得FG=FD,從而得證.【詳解】解:(1)如圖,在AC上截取AG=AE,連接FG.∵AD是∠BAC的平分線,CE是∠BCA的平分線,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論