版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④2、如圖,在中,,,將繞點C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°3、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.4、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.5、下列事件是隨機(jī)事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天6、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨7、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.8、將等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.180第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在等腰直角中,已知,將繞點逆時針旋轉(zhuǎn)60°,得到,連接,若,則________.2、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.3、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結(jié)果保留)4、某農(nóng)科所為了深入踐行“綠水青山就是金山銀山”的理念,大力開展對植物生長的研究,該農(nóng)科所在相同條件下做某植物種子發(fā)芽率的試驗,得到的結(jié)果如下表所示:種子個數(shù)1002003004005006007008009001000…發(fā)芽種子個數(shù)94188281349435531625719812902…發(fā)芽種子頻率(結(jié)果保留兩位小數(shù))0.940.940.940.870.870.890.890.900.900.90…根據(jù)頻率的穩(wěn)定性,估計這種植物種子不發(fā)芽的概率是______.5、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當(dāng)位置隨機(jī)地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計實驗結(jié)果),他將若干次有效實驗的結(jié)果繪制成了②所示的折線統(tǒng)計圖,由此他估計不規(guī)則圖案的面積大約為_____m2.6、到點的距離等于8厘米的點的軌跡是__.7、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.三、解答題(7小題,每小題0分,共計0分)1、對于平面直角坐標(biāo)系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.2、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.3、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結(jié)DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.4、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.5、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學(xué)的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學(xué)過的圖形變換,在圖2,3的方格紙中設(shè)計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.6、如圖,在中,,,D是邊BC上一點,作射線AD,滿足,在射線AD取一點E,且.將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,連接BE,F(xiàn)E,連接FC并延長交BE于點G.(1)依題意補(bǔ)全圖形;(2)求的度數(shù);(3)連接GA,用等式表示線段GA,GB,GC之間的數(shù)量關(guān)系,并證明.7、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當(dāng)∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.-參考答案-一、單選題1、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當(dāng)AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當(dāng)CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當(dāng)AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當(dāng)AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準(zhǔn)確圖形是解題關(guān)鍵.2、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.3、D【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進(jìn)而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.4、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進(jìn)而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.5、B【分析】根據(jù)事件的確定性和不確定性,以及隨機(jī)事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機(jī)事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關(guān)鍵是要明確:事件分為確定事件和不確定事件(隨機(jī)事件),確定事件又分為必然事件和不可能事件.6、A【分析】隨機(jī)事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機(jī)事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機(jī)事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機(jī)事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機(jī)事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機(jī)事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機(jī)事件的概念是解題的關(guān)鍵.7、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關(guān)鍵在于用扇形表示陰影面積.8、C【分析】根據(jù)旋轉(zhuǎn)對稱圖形的概念(把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角),找到旋轉(zhuǎn)角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉(zhuǎn)n時與原圖案完全重合,因而繞其中心旋轉(zhuǎn)的最小度數(shù)是=120°.故選C.【點睛】本題考查了根據(jù)旋轉(zhuǎn)對稱性,掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.二、填空題1、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識.解題的關(guān)鍵在于做輔助線構(gòu)造直角三角形.2、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據(jù)三角形的三邊關(guān)系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,關(guān)鍵是證點H是以AB為直徑的圓上一點.3、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關(guān)鍵是熟悉公式:扇形的弧長=.4、0.1【分析】大量重復(fù)試驗下“發(fā)芽種子”的頻率可以估計“發(fā)芽種子”的概率,據(jù)此求解.【詳解】觀察表格發(fā)現(xiàn)隨著實驗次數(shù)的增多頻率逐漸穩(wěn)定在0.9附近,故“發(fā)芽種子”的概率估計值為0.9.∴這種植物種子不發(fā)芽的概率是0.1.故答案為:0.1.【點睛】本題考查了利用頻率估計概率的知識,解題的關(guān)鍵是了解大量重復(fù)試驗中某個事件發(fā)生的頻率能估計概率.5、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大小;繼而根據(jù)折線圖用頻率估計概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當(dāng)事件A試驗次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點睛】本題考查幾何概率以及用頻率估計概率,并在此基礎(chǔ)上進(jìn)行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當(dāng)中找到考點化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.6、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進(jìn)行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關(guān)鍵,注意掌握圓的定義是在同一平面內(nèi)到定點的距離等于定長的點的集合.7、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關(guān)鍵.三、解答題1、(1)①B和C;②或;(2)或【分析】(1)①分別找出點A,B,C到線段ON的最小值和最大值,是否滿足“二分點”定義即可;②對a的取值分情況討論:、、和,根據(jù)“二分點”的定義可求解;(2)設(shè)線段AN上存在的“二分點”為,對的取值分情況討論、,、,和,根據(jù)“二分點”的定義可求解.【詳解】(1)①∵點A在ON上,故最小值為0,不符合題意,點B到ON的最小值為,最大值為,∴點B是線段ON的“二分點”,點C到ON的最小值為1,最大值為,∴點C是線段ON的“二分點”,故答案為:B和C;②若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:;若,如圖所示:點C到OD的最小值為1,最大值為,滿足題意;若時,如圖所示:點C到OD的最小值為1,最大值為,∵點C為線段OD的“二分點”,∴,解得:(舍);若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:或(舍),綜上所得:a的取值范圍為或;(2)如圖所示,設(shè)線段AN上存在的“二分點”為,當(dāng)時,最小值為:,最大值為:,∴,即,∵,∴∴;當(dāng),時,最小值為:,最大值為:,∴∴,即,∵,∴,∵,∴不存在;當(dāng),時,最小值為:,最大值為:,∴,即,∴,∵,∴不存在;當(dāng)時,最小值為:,最大值為:,∴,即,∴,∵,∴,綜上所述,r的取值范圍為或.【點睛】本題考查坐標(biāo)上的兩點距離,解一元二次方程解不等式以及點到圓的距離求最值,根據(jù)題目所給條件,掌握“二分點”的定義是解題的關(guān)鍵.2、(1)45°;(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,,通過等量代換及三角形內(nèi)角和得,根據(jù)四點共圓即可求得;(2)連接EB,先證明出,根據(jù)全等三角形的性質(zhì)得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉(zhuǎn)可知:,,,,∴,,.由三角形內(nèi)角和定理得,∴點A,D,F(xiàn),E共圓.∴.(2)連接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形全等判定及性質(zhì)、勾股定理、三角形內(nèi)角和等,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).3、(1)見解析(2)【分析】(1)連接,先根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理可得,然后根據(jù)直角三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得,從而可得,最后根據(jù)圓的切線的判定即可得證;(2)連接,先利用勾股定理可得,設(shè)的半徑為,從而可得,再在中,利用勾股定理即可得.(1)證明:如圖,連接,,,是的直徑,,,點是的中點,,,,即,又是的半徑,是的切線;(2)解:如圖,連接,,,設(shè)的半徑為,則,在中,,即,解得,故的半徑為.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、圓的切線的判定、勾股定理等知識點,熟練掌握圓周角定理和圓的切線的判定是解題關(guān)鍵.4、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進(jìn)而說明BE⊥AB即可證明.(1)證明:∵點D為弦BC中點∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識點,掌握垂徑定理是解答本題的關(guān)鍵.5、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點均在方格紙的格點上,且四個三角形不重疊,是軸對稱圖形;②所設(shè)計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點睛】本題考查利用旋轉(zhuǎn)或軸對稱設(shè)計方案,關(guān)鍵是理解旋轉(zhuǎn)和軸對稱的概念,按要求作圖即可.6、(1)見解析;(2)(3)【分析】(1)根據(jù)題意補(bǔ)全圖形即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,進(jìn)而證明,可得,根據(jù)角度的轉(zhuǎn)換可得,進(jìn)而根據(jù)三角形的外角性質(zhì)即可證明;(3)過點作,證明,進(jìn)而根據(jù)勾股定理以及線段的轉(zhuǎn)換即可得到(1)如圖,(2)將線段AE繞點A逆時針旋轉(zhuǎn)90°,得到線段AF,,,又即(3)證明如下,如圖,過點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年國際傳統(tǒng)醫(yī)藥國際城市漁業(yè)航空合同
- 2026年廢疫病疫情波污染易發(fā)區(qū)保護(hù)保險合同中
- 2025年普陀區(qū)第二人民醫(yī)院招聘財務(wù)收費崗位合同制員工1名備考題庫及參考答案詳解一套
- 2025年廣州越秀區(qū)文聯(lián)招聘合同制輔助人員備考題庫及一套參考答案詳解
- 嘉善縣招聘協(xié)管員面試題及答案
- 勞保協(xié)管員面試題及答案解析(2025版)
- 2025國家公務(wù)員國家稅務(wù)總局富順縣稅務(wù)局面試試題及答案
- 2025年東光輔警招聘真題及答案
- 定西市隴西縣招聘城鎮(zhèn)公益性崗位工作人員考試真題2024
- 2025 九年級語文下冊戲劇人物性格特點分析課件
- FSSC22000 V6食品安全管理體系管理手冊及程序文件
- 中國卒中學(xué)會急性缺血性卒中再灌注治療指南2024解讀
- 2025年二十屆四中全會知識測試題庫(含答案)
- DB23-T 3964-2025 高寒地區(qū)公路工程大體積混凝土冬期施工技術(shù)規(guī)范
- 工程項目監(jiān)理投標(biāo)答辯技巧指南
- 舞臺現(xiàn)場安全知識培訓(xùn)課件
- 施工質(zhì)量安全環(huán)保工期售后服務(wù)保障措施及相關(guān)的違約承諾
- JJF(蒙) 真空測量系統(tǒng)在線校準(zhǔn)規(guī)范
- 溝槽施工安全培訓(xùn)課件
- 送餐車采購方案范本
- 110kv高壓配電網(wǎng)設(shè)計
評論
0/150
提交評論