考點(diǎn)解析-山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編定向測(cè)評(píng)試卷(含答案詳解)_第1頁(yè)
考點(diǎn)解析-山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編定向測(cè)評(píng)試卷(含答案詳解)_第2頁(yè)
考點(diǎn)解析-山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編定向測(cè)評(píng)試卷(含答案詳解)_第3頁(yè)
考點(diǎn)解析-山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編定向測(cè)評(píng)試卷(含答案詳解)_第4頁(yè)
考點(diǎn)解析-山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編定向測(cè)評(píng)試卷(含答案詳解)_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省侯馬市中考數(shù)學(xué)真題分類(勾股定理)匯編定向測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底墻到左墻角的距離為1.5m,頂端距離地面2m,如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面0.7m,那么小巷的寬度為(

)A.3.2m B.3.5m C.3.9m D.4m2、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為A.9 B.6 C.4 D.33、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,若AC=3,AB=5,則CE的長(zhǎng)為()A. B. C. D.4、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對(duì)角C處捕食,則它爬行的最短距離是()A. B. C. D.5、如圖是一個(gè)三級(jí)臺(tái)階,它的每一級(jí)的長(zhǎng)、寬、高分別為20dm、3dm、2dm,A和B是這個(gè)臺(tái)階上兩個(gè)相對(duì)的端點(diǎn),點(diǎn)A處有一只螞蟻,想到點(diǎn)B處去吃可口的食物,則螞蟻沿著臺(tái)階面爬行到點(diǎn)B的最短路程為(

)A.20dm B.25dm C.30dm D.35dm6、我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》有一道“蕩秋千”的問(wèn)題:“平地秋千未起,踏板一尺離地.送行二步與人齊,5尺人高曾記,仕女家人爭(zhēng)蹴.良工高士素好奇,算出索長(zhǎng)有幾?”此問(wèn)題可理解為:“如圖,有一架秋千,當(dāng)它靜止時(shí),踏板離地距離的長(zhǎng)為尺,將它向前水平推送尺時(shí),即尺,秋千踏板離地的距離和身高尺的人一樣高,秋千的繩索始終拉得很直,試問(wèn)繩索有多長(zhǎng)?”,設(shè)秋千的繩索長(zhǎng)為尺,根據(jù)題意可列方程為(

)A. B.C. D.7、若直角三角形的三邊長(zhǎng)分別為2,4,x,則x的可能值有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來(lái),蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米2、小聰準(zhǔn)備測(cè)量河水的深度,他把一根竹竿插到離岸邊遠(yuǎn)的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為__________.3、《九章算術(shù)》是我國(guó)古代最重要的數(shù)學(xué)著作之一,在勾股章中記載了一道“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去本三尺,問(wèn)折著高幾何?”翻譯成數(shù)學(xué)問(wèn)題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長(zhǎng),若設(shè)AC=x,則可列方程為________________.4、如圖,圓柱形無(wú)蓋玻璃容器,高18cm,底面周長(zhǎng)為60cm,在外側(cè)距下底1cm的點(diǎn)C處有一蜘蛛,與蜘蛛相對(duì)的圓柱形容器的上口外側(cè)距開口1cm的F處有一蒼蠅,則急于捕獲蒼蠅充饑的蜘蛛所走的最短路線的長(zhǎng)度為__________cm(容器壁厚度忽略不計(jì)).5、如圖所示,在△ABC中,∠B=90°,AB=3,AC=5,將△ABC折疊,使點(diǎn)C與點(diǎn)A重合,折痕為DE,則△ABE的周長(zhǎng)為.6、如圖,點(diǎn)在正方形的邊上,若,,那么正方形的面積為_.7、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上.若AB=10,BC=8,則△ACE的面積為________.8、如圖,鐵路MN和公路PQ在O點(diǎn)處交匯,公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,如果火車行駛時(shí),周圍兩百米以內(nèi)會(huì)受到噪音的影響,那么火車在鐵路MN上沿ON方向,以144千米/時(shí)的速度行駛時(shí),A處受噪音影響的時(shí)間是_______s三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖所示的一塊地,已知,,,,,求這塊地的面積.2、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,有一臺(tái)風(fēng)中心沿東西方向AB由點(diǎn)A行駛向點(diǎn)B,已知點(diǎn)C為一海港,且點(diǎn)C與直線AB上兩點(diǎn)A、B的距離分別為300km和400km,又AB=500km,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會(huì)受臺(tái)風(fēng)影響嗎?為什么?(2)若臺(tái)風(fēng)的速度為20km/h,臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有多長(zhǎng)?3、湖的兩岸有A,B兩棵景觀樹,數(shù)學(xué)興趣小組設(shè)計(jì)實(shí)驗(yàn)測(cè)量?jī)煽镁坝^樹之間的距離,他們?cè)谂cAB垂直的BC方向上取點(diǎn)C,測(cè)得米,米.求:(1)兩棵景觀樹之間的距離;(2)點(diǎn)B到直線AC的距離.4、細(xì)心觀察圖形,認(rèn)真分析各式,然后解答問(wèn)題.OA22=,;OA32=12+,;OA42=12+,…(1)請(qǐng)用含有n(n是正整數(shù))的等式表示上述變規(guī)律:OAn2=______;Sn=______.(2)求出OA10的長(zhǎng).(3)若一個(gè)三角形的面積是,計(jì)算說(shuō)明他是第幾個(gè)三角形?(4)求出S12+S22+S32+…+S102的值.5、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A,H,B在一條直線上),并新修一條路CH,測(cè)得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問(wèn)CH是不是從村莊C到河邊的最近路,請(qǐng)通過(guò)計(jì)算加以說(shuō)明;(2)求原來(lái)的路線AC的長(zhǎng).6、如圖,有一架秋千,當(dāng)他靜止時(shí),踏板離地的垂直高度,將他往前推送(水平距離)時(shí),秋千的踏板離地的垂直高度,秋千的繩索始終拉得很直,求繩索的長(zhǎng)度.7、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】如圖,在Rt△ACB中,先根據(jù)勾股定理求出AB,然后在Rt△A′BD中根據(jù)勾股定理求出BD,進(jìn)而可得答案.【詳解】解:如圖,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故選:C.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,正確理解題意、熟練掌握勾股定理是解題的關(guān)鍵.2、D【解析】【分析】由題意可知:中間小正方形的邊長(zhǎng)為:,根據(jù)勾股定理以及題目給出的已知數(shù)據(jù)即可求出小正方形的邊長(zhǎng).【詳解】解:由題意可知:中間小正方形的邊長(zhǎng)為:,每一個(gè)直角三角形的面積為:,,,或(舍去),故選:D.【考點(diǎn)】本題考查勾股定理,解題的關(guān)鍵是熟練運(yùn)用勾股定理以及完全平方公式,本題屬于基礎(chǔ)題型.3、A【解析】【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對(duì)頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長(zhǎng)為.故選A.【考點(diǎn)】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是推出∠CEF=∠CFE.4、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點(diǎn)之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點(diǎn)A、C之間的最短距離為線段AC的長(zhǎng).在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長(zhǎng),AD=π,∴AC=,故選C.【考點(diǎn)】本題考查了平面展開-最短路徑問(wèn)題,解題的關(guān)鍵是會(huì)將圓柱的側(cè)面展開,并利用勾股定理解答.5、B【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點(diǎn)之間線段最短進(jìn)行解答.【詳解】三級(jí)臺(tái)階平面展開圖為長(zhǎng)方形,長(zhǎng)為20dm,寬為(2+3)×3dm,則螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程是此長(zhǎng)方形的對(duì)角線長(zhǎng).可設(shè)螞蟻沿臺(tái)階面爬行到B點(diǎn)最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點(diǎn)】本題考查了平面展開——最短路徑問(wèn)題,用到臺(tái)階的平面展開圖,只要根據(jù)題意判斷出長(zhǎng)方形的長(zhǎng)和寬即可解答.6、C【解析】【分析】根據(jù)勾股定理列方程即可得出結(jié)論.【詳解】解:由題意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故選:C.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,讀懂題意是解題的關(guān)鍵.7、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時(shí)要對(duì)x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時(shí),x2=22+42=20,所以x=2;當(dāng)4為斜邊時(shí),x2=16-4=12,x=2.故選B.點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.二、填空題1、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.2、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長(zhǎng)構(gòu)成直角三角形,利用勾股定理進(jìn)行計(jì)算即可.【詳解】根據(jù)題意畫出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點(diǎn)】本題考查了勾股定理,根據(jù)題意畫示意圖找出與所求邊長(zhǎng)相關(guān)線段所構(gòu)成直角三角形是解題關(guān)鍵.3、【解析】【分析】設(shè)AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解決本題的關(guān)鍵.4、34【解析】【分析】首先展開圓柱的側(cè)面,即是矩形,接下來(lái)根據(jù)兩點(diǎn)之間線段最短,可知CF的長(zhǎng)即為所求;然后結(jié)合已知條件求出DF與CD的長(zhǎng),再利用勾股定理進(jìn)行計(jì)算即可.【詳解】如圖為圓柱形玻璃容器的側(cè)面展開圖,線段CF是蜘蛛由C到F的最短路程.根據(jù)題意,可知DF=18-1-1=16(cm),CD(cm),∴(cm),即蜘蛛所走的最短路線的長(zhǎng)度是34cm.故答案為34.【考點(diǎn)】此題是有關(guān)最短路徑的問(wèn)題,關(guān)鍵在于把立體圖形展開成平面圖形,找出最短路徑;5、7【解析】【分析】根據(jù)勾股定理求得BC,再根據(jù)折疊性質(zhì)得到AE=CE,進(jìn)而由三角形的周長(zhǎng)=AB+BC求解即可.【詳解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周長(zhǎng)=AB+BC=3+4=7.故答案是:7.【考點(diǎn)】本題考查勾股定理、折疊性質(zhì),熟練掌握勾股定理是解答的關(guān)鍵.6、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計(jì)算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.7、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問(wèn)題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.8、8【解析】【分析】過(guò)點(diǎn)A作AC⊥ON,根據(jù)題意可知AC的長(zhǎng)與200米相比較,發(fā)現(xiàn)受到影響,然后過(guò)點(diǎn)A作AD=AB=200米,求出BD的長(zhǎng)即可得出居民樓受噪音影響的時(shí)間.【詳解】解:如圖:過(guò)點(diǎn)A作AC⊥ON,AB=AD=200米,∵公路PQ上A處點(diǎn)距離O點(diǎn)240米,距離MN120米,∴AC=120米,當(dāng)火車到B點(diǎn)時(shí)對(duì)A處產(chǎn)生噪音影響,此時(shí)AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵144千米/小時(shí)=40米/秒,∴影響時(shí)間應(yīng)是:320÷40=8秒.故答案為:8.【考點(diǎn)】本題考查勾股定理的應(yīng)用.根據(jù)題意構(gòu)建直角三角形是解題關(guān)鍵.三、解答題1、【解析】【分析】根據(jù)勾股定理求得的長(zhǎng),再根據(jù)勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點(diǎn)】本題考查了學(xué)生對(duì)勾股定理及其逆定理的理解及運(yùn)用能力,解題的關(guān)鍵是掌握勾股定理的知識(shí).2、(1)會(huì),理由見解析;(2)7h【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而利用三角形面積得出CD的長(zhǎng),從而判斷出海港C是否受臺(tái)風(fēng)影響;(2)利用勾股定理得出ED以及EF的長(zhǎng),進(jìn)而得出臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間.【詳解】解:(1)如圖所示,過(guò)點(diǎn)C作CD⊥AB于D點(diǎn),∵AC=300km,BC=400km,AB=500km,∴,∴△ABC為直角三角形,∴,∴,∴,∵以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域,∴海港C會(huì)受到臺(tái)風(fēng)影響;(2)由(1)得CD=240km,如圖所示,當(dāng)EC=FC=250km時(shí),即臺(tái)風(fēng)經(jīng)過(guò)EF段時(shí),正好影響到海港C,此時(shí)△ECF為等腰三角形,∵,∴EF=140km,∵臺(tái)風(fēng)的速度為20km/h,∴140÷20=7h,∴臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有7h.【考點(diǎn)】本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.3、(1)A,B兩點(diǎn)間的距離是40米;(2)點(diǎn)B到直線AC的距離是24米.【解析】【分析】(1)根據(jù)勾股定理解答即可;(2)根據(jù)三角形面積公式解答即可.【詳解】(1)因?yàn)槭侵苯侨切?,所以由勾股定理,得.因?yàn)槊?,,所以.因?yàn)?,所以米.即A,B兩點(diǎn)間的距離是40米.(2)過(guò)點(diǎn)B作于點(diǎn)D.因?yàn)?,所以.所以(米),即點(diǎn)B到直線AC的距離是24米.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,屬于基礎(chǔ)題,關(guān)鍵是掌握勾股定理在直角三角形中的表達(dá)式.4、(1)OAn2=n;Sn=;(2)OA10=;(3)說(shuō)明他是第20個(gè)三角形;(4).【解析】【分析】(1)利用已知可得OAn2,注意觀察數(shù)據(jù)的變化,(2)結(jié)合(1)中規(guī)律即可求出OA102的值即可求出,(3)若一個(gè)三角形的面積是,利用前面公式可以得到它是第幾個(gè)三角形,(4)根據(jù)題意列出式子即可求出.【詳解】(1)結(jié)合已知數(shù)據(jù),可得:OAn2=n;Sn=;(2)∵OAn2=n,∴OA10=;(3)若一個(gè)三角形的面積是,根據(jù):Sn==,∴=2=,∴說(shuō)明他是第20個(gè)三角形,(4)S12+S22+S32+…+S102,=,=,=,=.故答案為(1)OAn2=n;Sn=;(2)OA10=;(3)說(shuō)明他是第20個(gè)三角形;(4).【考點(diǎn)】本題考查規(guī)律型:圖形的變化類,勾股定理的應(yīng)用.5、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點(diǎn)到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論