版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④2、如圖,∠B=∠E=90°,AB=DE,AC=DF,則△ABC≌△DEF的理由是()A.SAS B.ASA C.AAS D.HL3、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.4、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標(biāo)有1、2、3、4的四塊),你認(rèn)為將其中的哪一些塊帶去,就能配一塊與原來一樣大小的三角形?應(yīng)該帶(
)A.第1塊 B.第2塊 C.第3塊 D.第4塊5、如圖所示,是的邊上的中線,cm,cm,則邊的長(zhǎng)度可能是(
)A.3cm B.5cm C.14cm D.13cm第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC中,AC=BC,∠ABC=54°,CE平分∠ACB,AD平分∠CAB,CE與AD交于點(diǎn)F,G為△ABC外一點(diǎn),∠ACD=∠FCG,∠CBG=∠CAF,連接DG.下列結(jié)論:①△ACF≌△BCG;②∠BGC=117°;③S△ACE=S△CFD+S△BCG;④AD=DG+BG.其中結(jié)論正確的是_____________(只需要填寫序號(hào)).2、如圖,在中,,F(xiàn)是高AD和BE的交點(diǎn),cm,則線段BF的長(zhǎng)度為______.3、如圖,在和中,點(diǎn)B、E、C、F在同一條直線上,且,,請(qǐng)你再添加一個(gè)適當(dāng)?shù)臈l件:________________,使.4、如圖,中,以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交于點(diǎn)M,交于點(diǎn)N,分別以點(diǎn)M,N為圓心,以大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C,作射線,過點(diǎn)C作于點(diǎn)D.交于點(diǎn)E,若,則的度數(shù)為_______________.5、如圖,,若,則到的距離為_________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,,點(diǎn)E在BC上,且,.(1)求證:;(2)判斷AC和BD的位置關(guān)系,并說明理由.2、△ABC、△DPC都是等邊三角形.(1)如圖1,求證:AP=BD;(2)如圖2,點(diǎn)P在△ABC內(nèi),M為AC的中點(diǎn),連PM、PA、PB,若PA⊥PM,且PB=2PM.①求證:BP⊥BD;②判斷PC與PA的數(shù)量關(guān)系并證明.3、如圖,在△ABC中,BC=AB,∠ABC=90°,F(xiàn)為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC上,且AE=CF.(1)求證:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度數(shù).4、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點(diǎn)O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.5、某數(shù)學(xué)興趣小組在一次活動(dòng)中進(jìn)行了探究試驗(yàn)活動(dòng),請(qǐng)你來加入.【探究與發(fā)現(xiàn)】(1)如圖1,AD是的中線,延長(zhǎng)AD至點(diǎn)E,使,連接BE,證明:.【理解與應(yīng)用】(2)如圖2,EP是的中線,若,,設(shè),則x的取值范圍是________.(3)如圖3,AD是的中線,E、F分別在AB、AC上,且,求證:.-參考答案-一、單選題1、D【解析】【分析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點(diǎn)P,∴點(diǎn)P到AB、AC的距離相等,點(diǎn)P到AB、BC的距離相等,∴點(diǎn)P到BC、AC的距離相等,∴點(diǎn)P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理.掌握相關(guān)性質(zhì)是解題的關(guān)鍵.2、D【解析】【詳解】∵在Rt△ABC與Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故選D.3、D【解析】【分析】過點(diǎn)D作DH⊥AC于H,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據(jù)全等三角形的面積相等列方程求解即可.【詳解】如圖,過點(diǎn)D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),熟記掌握相關(guān)性質(zhì)、正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.4、B【解析】【分析】本題應(yīng)先假定選擇哪塊,再對(duì)應(yīng)三角形全等判定的條件進(jìn)行驗(yàn)證.【詳解】解:1、3、4塊玻璃不同時(shí)具備包括一完整邊在內(nèi)的三個(gè)證明全等的要素,所以不能帶它們?nèi)?,只有?塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點(diǎn)】本題主要考查三角形全等的判定,看這4塊玻璃中哪個(gè)包含的條件符合某個(gè)判定.判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.5、B【解析】【分析】延長(zhǎng)AD至M使DM=AD,連接CM,根據(jù)SAS得出,得出AB=CM=4cm,再根據(jù)三角形的三邊關(guān)系得出AC的范圍,從而得出結(jié)論.【詳解】解:延長(zhǎng)AD至M使DM=AD,連接CM,∵是的邊上的中線,∴BD=CD,∵∠ADB=∠CDM,∴,∴MC=AB=5cm,AD=DM=4cm,∴AM=8cm在中,即:3<AC<13,故選:B【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)以及三角形的三邊關(guān)系,根據(jù)三角形的三邊關(guān)系找出AC長(zhǎng)度的取值范圍是解題的關(guān)鍵.二、填空題1、①②④【解析】【分析】根據(jù)條件求得∠BAC=∠ABC=54°,∠ACB=72°,∠ACE=∠BCE=36°,∠CAF=∠BAF=27°,利用ASA證明△ACF≌△BCG,再根據(jù)SAS證明△CDF≌△CDG,據(jù)此即可推斷各選項(xiàng)的正確性.【詳解】解:在△ABC中,AC=BC,∠ABC=54°,∴∠BAC=∠ABC=54°,∠ACB=180°-54°-54°=72°,∵AC=BC,CE平分∠ACB,AD平分∠CAB,∴∠ACE=∠BCE=∠ACB=36°,∠CAF=∠BAF=∠BAC=27°,∵∠ACD=∠FCG=72°,∴∠BCG=∠FCG-36°=36°,在△ACF和△BCG中,,∴△ACF≌△BCG(ASA);故①正確;∴∠BGC=∠AFC=180°-36°-27°=117°,故②正確;∴CF=CG,AF=BG,在△CDF和△CDG中,,∴△CDF≌△CDG(SAS),∴DF=DG,∴AD=DF+AF=DG+BG,故④正確;∵S△CFD+S△BCG=S△CFD+S△ACF=S△ACD,而S△ACE不等于S△ACD,故③不正確;綜上,正確的是①②④,故答案為:①②④.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,角平分線的定義,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,2、8cm【解析】【分析】先求,推導(dǎo)出,再求出,,根據(jù)ASA證明,即可得出答案.【詳解】∵,,∴,∴,∴,∵,,∴,在△BFD和△ACD中,∴(ASA),∴cm故答案為:8cm【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)邊相等.3、或或【解析】【分析】根據(jù)全等三角形的判定即可求解.【詳解】解:①根據(jù)定理,即,可得;②根據(jù)定理,即,可得;③若,則,則根據(jù)定理,即可得;綜上所述,添加一個(gè)適當(dāng)?shù)臈l件:或或,故答案為:或或.(答案不唯一)【考點(diǎn)】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解題的關(guān)鍵.4、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點(diǎn)】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.5、4【解析】【分析】過P點(diǎn)作PE⊥OB于E,根據(jù)角平分線的性質(zhì)定理可得PE=PD,即可求解.【詳解】解:如圖,過P點(diǎn)作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)定理是解題的關(guān)鍵.三、解答題1、(1)見解析(2),理由見解析【解析】【分析】(1)運(yùn)用SSS證明即可;(2)由(1)得,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得結(jié)論.(1)在和中,,∴(SSS);(2)AC和BD的位置關(guān)系是,理由如下:∵∴,∴.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定定理是解答本題的關(guān)鍵.2、(1)證明過程見解析;(2)①證明過程見解析;②PC=2PA,理由見解析.【解析】【分析】(1)證明△BCD≌△ACP(SAS),可得結(jié)論;(2)①如圖2中,延長(zhǎng)PM到K,使得MK=PM,連接CK.證明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再證明△PDB≌△PCK(SSS),可得結(jié)論;②結(jié)論:PC=2PA.想辦法證明∠DPB=30°,可得結(jié)論.(1)證明:如圖1中,∵△ABC,△CDP都是等邊三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;(2)證明:如圖2中,延長(zhǎng)PM到K,使得MK=PM,連接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可證△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:結(jié)論:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,設(shè)∠DPB=∠CPK=x,則∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.【考點(diǎn)】本題屬于三角形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),直角三角形30°角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,關(guān)注全等三角形解決問題.3、(1)證明見解析(2)【解析】【分析】(1)由“HL”可證Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠BAE的度數(shù),又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度數(shù),則由∠ACF=∠BCF+∠ACB即可求得答案.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL);(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°?!逺t△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°【考點(diǎn)】此題考查了直角三角形全等的判定與性質(zhì).解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.4、(1)證明見解析;(2)互相垂直,證明見解析【解析】【分析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.【詳解】(1)證明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.證明:連接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.5、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 出納員招聘面試題及答案
- 市場(chǎng)策略分析師職位面試技巧與高頻問題解析
- 投資分析師的常見問題與答案參考
- 直播運(yùn)營(yíng)經(jīng)理面試題及流量變現(xiàn)方法含答案
- 2025年智能城市管理系統(tǒng)可行性研究報(bào)告
- 2025年水資源綜合利用管理項(xiàng)目可行性研究報(bào)告
- 2025年城市微綠化推廣項(xiàng)目可行性研究報(bào)告
- 2025年生態(tài)農(nóng)業(yè)發(fā)展模式的可行性研究報(bào)告
- 2025年人工智能健康診斷系統(tǒng)研發(fā)項(xiàng)目可行性研究報(bào)告
- 2025年環(huán)保產(chǎn)業(yè)投資合作項(xiàng)目可行性研究報(bào)告
- 兒科醫(yī)生規(guī)培述職報(bào)告
- 東北林業(yè)大學(xué)19-20高數(shù)A1期末考試
- 江蘇蘇州市常熟經(jīng)開控股有限公司招聘筆試題庫(kù)2025
- 2025年廣西國(guó)控資本運(yùn)營(yíng)集團(tuán)有限責(zé)任公司秋季公開招聘534人筆試考試參考試題附答案解析
- 醫(yī)院收費(fèi)6S管理制度
- 2025年NASM-CES-I國(guó)際運(yùn)動(dòng)康復(fù)專家考試備考試題及答案解析
- 老年科的疾病宣教
- 校園保潔服務(wù)方案投標(biāo)方案(技術(shù)標(biāo))
- 2025年上半年縣稅務(wù)領(lǐng)導(dǎo)履行全面從嚴(yán)治黨“一崗雙責(zé)”責(zé)任述職報(bào)告
- 圓鋼加工協(xié)議書
- 《季氏將伐顓臾》
評(píng)論
0/150
提交評(píng)論