難點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【模擬題】_第1頁
難點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【模擬題】_第2頁
難點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【模擬題】_第3頁
難點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【模擬題】_第4頁
難點(diǎn)解析滬科版9年級下冊期末試題及參考答案詳解【模擬題】_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.2、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.3、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.4、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5、如圖,在矩形ABCD中,點(diǎn)E在CD邊上,連接AE,將沿AE翻折,使點(diǎn)D落在BC邊的點(diǎn)F處,連接AF,在AF上取點(diǎn)O,以O(shè)為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點(diǎn)G,H,連接FG,GH.則下列結(jié)論錯(cuò)誤的是()A. B.四邊形EFGH是菱形C. D.6、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個(gè)數(shù)是()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)7、下列四個(gè)圖案中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.8、扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,那么扇形的面積()A.不變 B.面積擴(kuò)大為原來的3倍C.面積擴(kuò)大為原來的9倍 D.面積縮小為原來的第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、已知如圖,AB=8,AC=4,∠BAC=60°,BC所在圓的圓心是點(diǎn)O,∠BOC=60°,分別在、線段AB和AC上選取點(diǎn)P、E、F,則PE+EF+FP的最小值為____________.2、如圖,是由繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,若點(diǎn)D恰好落在AB上,且的度數(shù)為100°,則的度數(shù)是______.3、將點(diǎn)繞x軸上的點(diǎn)G順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn),當(dāng)點(diǎn)恰好落在以坐標(biāo)原點(diǎn)O為圓心,2為半徑的圓上時(shí),點(diǎn)G的坐標(biāo)為________.4、在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是______.5、如圖,在⊙O中,∠BOC=80°,則∠A=___________°.6、如圖,在矩形中,,,F(xiàn)為中點(diǎn),P是線段上一點(diǎn),設(shè),連結(jié)并將它繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段,連結(jié)、,則在點(diǎn)P從點(diǎn)B向點(diǎn)C的運(yùn)動(dòng)過程中,有下面四個(gè)結(jié)論:①當(dāng)時(shí),;②點(diǎn)E到邊的距離為m;③直線一定經(jīng)過點(diǎn);④的最小值為.其中結(jié)論正確的是______.(填序號(hào)即可)7、如圖,在⊙O中,=,AB=10,BC=12,D是上一點(diǎn),CD=5,則AD的長為______.三、解答題(7小題,每小題0分,共計(jì)0分)1、如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點(diǎn)B關(guān)于原點(diǎn)對稱的點(diǎn)B′的坐標(biāo):;(2)平移△ABC,使平移后點(diǎn)A的對應(yīng)點(diǎn)A1的坐標(biāo)為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2.2、新冠病毒在全球肆虐,疫情防控刻不容緩.某校為了解學(xué)生對新冠疫情防控知識(shí)的了解程度,組織七、八年級學(xué)生開展新冠疫情防控知識(shí)測試(滿分為10分).學(xué)校學(xué)生處從七、八年級學(xué)生中各隨機(jī)抽取了20名學(xué)生的成績進(jìn)行了統(tǒng)計(jì).下面提供了部分信息.抽取的20名七年級學(xué)生的成績(單位:分)為:10,10,9,9,9,9,9,9,8,8,8,8,8,8,8,7,7,6,5,5.抽取的40名學(xué)生成績分析表:年級七年級八年級平均分88.1眾數(shù)8b中位數(shù)a8方差1.91.89請根據(jù)以上信息,解答下列問題:(1)直接寫出上表中a,b的值;(2)該校七、八年級共有學(xué)生2000人,估計(jì)此次測試成績不低于9分的學(xué)生有多少人?(3)在所抽取的七年級與八年級得10分的學(xué)生中,隨機(jī)抽取2名學(xué)生在全校學(xué)生大會(huì)上進(jìn)行新冠疫情防控知識(shí)宣講,求所抽取的2名學(xué)生恰好是1名七年級學(xué)生和1名八年級學(xué)生的概率.3、一個(gè)不透明的口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4隨機(jī)摸取一個(gè)小球后,不放回,再隨機(jī)摸出一個(gè)小球,分別求下列事件的概率:(1)兩次取出的小球標(biāo)號(hào)和為奇數(shù);(2)兩次取出的小球標(biāo)號(hào)和為偶數(shù).4、如圖,在⊙O中,弦AC與弦BD交于點(diǎn)P,AC=BD.(1)求證AP=BP;(2)連接AB,若AB=8,BP=5,DP=3,求⊙O的半徑.5、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計(jì)了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時(shí),甲獲勝;否則,乙獲勝.小敏設(shè)計(jì)的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)6、一個(gè)幾何體的三個(gè)視圖如圖所示(單位:cm).(1)寫出這個(gè)幾何體的名稱:;(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積.7、綜合與實(shí)踐“利用尺規(guī)作圖三等分一個(gè)任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實(shí)際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點(diǎn),足夠長.使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點(diǎn),點(diǎn)落在邊上,半圓與另一邊恰好相切,切點(diǎn)為,則,就把三等分了.為了說明這一方法的正確性,需要對其進(jìn)行證明.獨(dú)立思考:(1)如下給出了不完整的“已知”和“求證”,請補(bǔ)充完整.已知:如圖2,點(diǎn),,,在同一直線上,,垂足為點(diǎn),________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應(yīng)用實(shí)踐:(3)若半圓的直徑為,,求的長度.-參考答案-一、單選題1、D【分析】連接,根據(jù)求得半徑,進(jìn)而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關(guān)系可得,即可證明是等邊三角形,求得,進(jìn)而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點(diǎn)睛】本題考查了弧與圓心角的關(guān)系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關(guān)鍵.2、C【分析】根據(jù)中心對稱圖形的定義進(jìn)行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項(xiàng)不符合題意;B、不是中心對稱圖形,故此選項(xiàng)不符合題意;C、是中心對稱圖形,故此選項(xiàng)符合題意;D、不是中心對稱圖形,故此選項(xiàng)不符合題意;故選C.【點(diǎn)睛】本題主要考查了中心對稱圖形的識(shí)別,解題的關(guān)鍵在于能夠熟練掌握中心對稱圖形的定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)就是它的對稱中心.3、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;故選:B.【點(diǎn)睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、C【詳解】解:選項(xiàng)A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項(xiàng)B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項(xiàng)C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項(xiàng)D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點(diǎn)睛】本題考查的是軸對稱圖形的識(shí)別,中心對稱圖形的識(shí)別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵,軸對稱圖形:把一個(gè)圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個(gè)圖形繞某點(diǎn)旋轉(zhuǎn)后能與自身重合.5、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進(jìn)而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點(diǎn)N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點(diǎn)G、H分別是切點(diǎn),∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點(diǎn)N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯(cuò)誤,符合題意.故選C.【點(diǎn)睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.6、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進(jìn)行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個(gè)既是軸對稱圖形又是中心對稱圖形.故選:A.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個(gè)圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°后能夠與自身重合,那么這個(gè)圖形就叫做中心對稱圖形,這個(gè)點(diǎn)叫做對稱中心.7、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、A【分析】設(shè)原來扇形的半徑為r,圓心角為n,則變化后的扇形的半徑為3r,圓心角為,利用扇形的面積公式即可計(jì)算得出它們的面積,從而進(jìn)行比較即可得答案.【詳解】設(shè)原來扇形的半徑為r,圓心角為n,∴原來扇形的面積為,∵扇形的半徑擴(kuò)大為原來的3倍,圓心角縮小為原來的,∴變化后的扇形的半徑為3r,圓心角為,∴變化后的扇形的面積為,∴扇形的面積不變.故選:A.【點(diǎn)睛】本題考查了扇形面積,熟練掌握并靈活運(yùn)用扇形面積公式是解題關(guān)鍵.二、填空題1、12【分析】如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,想辦法求出MN的最小值即可解決問題.【詳解】解:如圖,連接BC,AO,作點(diǎn)P關(guān)于AB的對稱點(diǎn)M,作點(diǎn)P關(guān)于AC的對稱點(diǎn)N,連接MN交AB于E,交AC于F,此時(shí)△PEF的周長=PE+PF+EF=EM+EF+FM=MN,∴當(dāng)MN的值最小時(shí),△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN=AM=PA,∴當(dāng)PA的值最小時(shí),MN的值最小,取AB的中點(diǎn)J,連接CJ.∵AB=8,AC=4,∴AJ=JB=AC=4,∵∠JAC=60°,∴△JAC是等邊三角形,∴JC=JA=JB,∴∠ACB=90°,∴BC=,∵∠BOC=60°,OB=OC,∴△OBC是等邊三角形,∴OB=OC=BC=4,∠BCO=60°,∴∠ACH=30°,∵AH⊥OH,AH=AC=2,CH=AH=2,∴OH=6,∴OA==4,∵當(dāng)點(diǎn)P在直線OA上時(shí),PA的值最小,最小值為-,∴MN的最小值為?(-)=-12.故答案:-12.【點(diǎn)睛】本題考查了圓周角定理,垂徑定理,軸對稱-最短問題等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對稱解決最短問題,屬于中考填空題中的壓軸題.2、35°【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠AOD=∠BOC=30°,AO=DO,再求出∠BOD,∠ADO,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】解:∵△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后得到的圖形,∴∠AOD=∠BOC=30°,AO=DO,∵∠AOC=100°,∴∠BOD=100°?30°×2=40°,∠ADO=∠A=(180°?∠AOD)=(180°?30°)=75°,由三角形的外角性質(zhì)得,∠B=∠ADO?∠BOD=75°?40°=35°.故答案為:35°.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.3、或【分析】設(shè)點(diǎn)G的坐標(biāo)為,過點(diǎn)A作軸交于點(diǎn)M,過點(diǎn)作軸交于點(diǎn)N,由全等三角形求出點(diǎn)坐標(biāo),由點(diǎn)在2為半徑的圓上,根據(jù)勾股定理即可求出點(diǎn)G的坐標(biāo).【詳解】設(shè)點(diǎn)G的坐標(biāo)為,過點(diǎn)A作軸交于點(diǎn)M,過點(diǎn)作軸交于點(diǎn)N,如圖所示:∵,∴,,∵點(diǎn)A繞點(diǎn)G順時(shí)針旋轉(zhuǎn)90°后得到點(diǎn),∴,,∴,∵軸,軸,∴,∴,∴,在與中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案為:,.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理,掌握相關(guān)知識(shí)之間的應(yīng)用是解題的關(guān)鍵.4、(3,4)【分析】關(guān)于原點(diǎn)對稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).【詳解】:由題意,得點(diǎn)(-3,-4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(3,4),故答案為:(3,4).【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點(diǎn)的坐標(biāo)規(guī)律:關(guān)于原點(diǎn)對稱的點(diǎn),橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).5、40°度【分析】直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:與是同弧所對的圓心角與圓周角,,.故答案為:.【點(diǎn)睛】本題考查的是圓周角定理,解題的關(guān)鍵是熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.6、②③④【分析】①當(dāng)在點(diǎn)的右邊時(shí),得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當(dāng)時(shí),有最小值,計(jì)算即可.【詳解】解:,為等腰直角三角形,,當(dāng)在點(diǎn)的左邊時(shí),,當(dāng)在點(diǎn)的右邊時(shí),,故①錯(cuò)誤;過點(diǎn)作,在和中,根據(jù)旋轉(zhuǎn)的性質(zhì)得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點(diǎn),不管P在上怎么運(yùn)動(dòng),得到都是等腰直角三角形,,即直線一定經(jīng)過點(diǎn),故③正確;是等腰直角三角形,當(dāng)時(shí),有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點(diǎn)睛】本題是四邊形綜合題,考查了矩形的性質(zhì),全等三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形,解題的關(guān)鍵是靈活運(yùn)用這些性質(zhì)進(jìn)行推理.7、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點(diǎn)睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.三、解答題1、(1)(4,﹣1);(2)見解析;(3)見解析.【分析】(1)根據(jù)關(guān)于原點(diǎn)對稱的兩點(diǎn)的橫縱坐標(biāo)均與原來點(diǎn)的橫縱坐標(biāo)互為相反數(shù),據(jù)此可得答案;(2)將三個(gè)點(diǎn)分別向右平移3個(gè)單位、再向上平移1個(gè)單位,繼而首尾順次連接即可;(3)將三個(gè)點(diǎn)分別繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到對應(yīng)點(diǎn),再首尾順次連接即可.【詳解】(1)點(diǎn)B關(guān)于原點(diǎn)對稱的點(diǎn)B′的坐標(biāo)為(4,﹣1),故答案為:(4,﹣1);(2)如圖所示,△A1B1C1即為所求.(3)如圖所示,△A2B2C2即為所求.【點(diǎn)睛】本題主要考查作圖—平移變換、旋轉(zhuǎn)變換,解題的關(guān)鍵是掌握平移變換和旋轉(zhuǎn)變換的定義與性質(zhì),并據(jù)此得出變換后的對應(yīng)點(diǎn).2、(1)(2)(3)【分析】(1)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;(2)用總?cè)藬?shù)乘以樣本中七、八年級不低于9分的學(xué)生人數(shù)和所占比例即可得,(3)根據(jù)列表法求概率即可.(1)根據(jù)抽取的20名七年級學(xué)生的成績找到第10個(gè)和第11個(gè)成績都是8,則中位數(shù)為8,即,根據(jù)條形統(tǒng)計(jì)圖可知9分的有6人,人數(shù)最多,則眾數(shù)為9,即(2)解:∵此次測試成績不低于9分的七年級學(xué)生有8人,八年級學(xué)生有9人∴此次測試成績不低于9分的學(xué)生有(人)(3)解:∵七年級得10分的有2人,八年級得10分的有3人設(shè)七年級的2人分別為,八年級的3人分別列表如下,根據(jù)列表可知,共有20種等可能結(jié)果,其中1名七年級學(xué)生和1名八年級學(xué)生的情形有12鐘則所抽取的2名學(xué)生恰好是1名七年級學(xué)生和1名八年級學(xué)生的概率為【點(diǎn)睛】本題考查了求中位數(shù),眾數(shù),根據(jù)樣本估計(jì)總體,列表法求概率,掌握以上知識(shí)是解題的關(guān)鍵.3、(1);(2).【分析】(1)列出表格展示所有可能的結(jié)果,根據(jù)表格即可知共有12種可能的情況,再找到兩次取出的小球標(biāo)號(hào)和為奇數(shù)的情況數(shù),利用概率公式,即可求解;(2)找出兩次取出的小球標(biāo)號(hào)和為偶數(shù)的情況數(shù),再利用概率公式,即可求解.(1)解:根據(jù)題意列出表格,如下表:根據(jù)表格可知:共有12種可能的情況,其中兩次取出的小球標(biāo)號(hào)和為奇數(shù)的情況有8種,故兩次取出的小球標(biāo)號(hào)和為奇數(shù)的概率為;(2)根據(jù)表格可知:兩次取出的小球標(biāo)號(hào)和為偶數(shù)的情況有4種.故兩次取出的小球標(biāo)號(hào)和為偶數(shù)的概率為.123411+2=3,奇數(shù)1+3=4,偶數(shù)1+4=5,奇數(shù)22+1=3,奇數(shù)2+3=5,奇數(shù)2+4=6,偶數(shù)33+1=4,偶數(shù)3+2=5,奇數(shù)3+4=7,奇數(shù)44+1=5,奇數(shù)4+2=6,偶數(shù)4+3=7,奇數(shù)【點(diǎn)睛】4、(1)證明見解析;(2).【分析】(1)連接,先證出,再根據(jù)圓周角定理可得,然后根據(jù)等腰三角形的判定即可得證;(2)連接,并延長交于點(diǎn),連接,過作于點(diǎn),先根據(jù)線段垂直平分線的判定與性質(zhì)可得,再根據(jù)線段的和差、勾股定理可得,然后根據(jù)直角三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,最后在中,利用勾股定理可得的長,從而可得的長,在中,利用勾股定理即可得.【詳解】證明:(1)如圖,連接,,,,即,,;(2)連接,并延長交于點(diǎn),連接,過作于點(diǎn),,,是的垂直平分線,,,,,在和中,,,,設(shè),則,在中,,即,解得,在中,,即的半徑為.【點(diǎn)睛】本題考查了圓周角定理、直角三角形全等的判定定理與性質(zhì)、勾股定理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論