難點解析人教版8年級數(shù)學上冊《全等三角形》定向練習練習題(含答案詳解)_第1頁
難點解析人教版8年級數(shù)學上冊《全等三角形》定向練習練習題(含答案詳解)_第2頁
難點解析人教版8年級數(shù)學上冊《全等三角形》定向練習練習題(含答案詳解)_第3頁
難點解析人教版8年級數(shù)學上冊《全等三角形》定向練習練習題(含答案詳解)_第4頁
難點解析人教版8年級數(shù)學上冊《全等三角形》定向練習練習題(含答案詳解)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,B,C,E,F(xiàn)四點在一條直線上,下列條件能判定△ABC與△DEF全等的是(

)A.AB∥DE,∠A=∠D,BE=CF B.AB∥DE,AB=DE,AC=DFC.AB∥DE,AC=DF,BE=CF D.AB∥DE,AC∥DF,∠A=∠D2、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標有1、2、3、4的四塊),你認為將其中的哪一些塊帶去,就能配一塊與原來一樣大小的三角形?應該帶(

)A.第1塊 B.第2塊 C.第3塊 D.第4塊3、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(點D與A,B不重合),連結(jié)CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點F,連接BE.當AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°4、已知∠AOB=60°,以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為()A.15° B.45° C.15°或30° D.15°或45°5、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在和中,,,直線交于點M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).2、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.3、如圖,四邊形ABCD,連接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD=7,則BE=________.4、如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分別為E,D,AD=25,DE=17,則BE=_____.5、如圖,的度數(shù)為___________.三、解答題(5小題,每小題10分,共計50分)1、如圖,在等腰三角形ABC中,∠A=90°,AB=AC=6,D是BC邊的中點,點E在線段AB上從B向A運動,同時點F在線段AC上從點A向C運動,速度都是1個單位/秒,時間是t秒(0<t<6),連接DE、DF、EF.(1)請判斷△EDF形狀,并證明你的結(jié)論.(2)以A、E、D、F四點組成的四邊形面積是否發(fā)生變化?若不變,求出這個值;若變化,用含t的式子表示.2、如圖1,點P、Q分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點M,則在P,Q運動的過程中,證明≌;(2)會發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);(3)P、Q運動幾秒時,是直角三角形?(4)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。3、如圖,在△ABC中,BC=AB,∠ABC=90°,F(xiàn)為AB延長線上一點,點E在BC上,且AE=CF.(1)求證:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度數(shù).4、在中,,D為BC延長線上一點,點E為線段AC,CD的垂直平分線的交點,連接EA,EC,ED.(1)如圖1,當時,則_______°;(2)當時,①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點F,滿足.P為直線CF上一動點.當?shù)闹底畲髸r,用等式表示PE,PD與AB之間的數(shù)量關(guān)系為_______,并證明.5、在中,,點D是直線BC上一點(點D不與點B,C重合),以AD為一邊在AD的右側(cè)作,使,,連接CE.(1)如圖(1),若點D在線段BC上,和之間有怎樣的數(shù)量關(guān)系?(不必說明理由)(2)若,當點D在射線BC上移動時,如圖(2),和之間有怎樣的數(shù)量關(guān)系?說明理由.-參考答案-一、單選題1、A【解析】【分析】根據(jù)全等三角形的判定條件逐一判斷即可.【詳解】解:A、∵,∴,∵,∴,即在和中∵∴,故A符合題意;B、∵,∴,再由,不可以利用SSA證明兩個三角形全等,故B不符合題意;C、∵,∴,再由,不可以利用SSA證明兩個三角形全等,故C不符合題意;D、∵,∴,,再由,不可以利用AAA證明兩個三角形全等,故D不符合題意;故選A.【考點】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關(guān)鍵.2、B【解析】【分析】本題應先假定選擇哪塊,再對應三角形全等判定的條件進行驗證.【詳解】解:1、3、4塊玻璃不同時具備包括一完整邊在內(nèi)的三個證明全等的要素,所以不能帶它們?nèi)ィ挥械?塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點】本題主要考查三角形全等的判定,看這4塊玻璃中哪個包含的條件符合某個判定.判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.3、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準確判定三角形全等,從而利用全等三角形性質(zhì)解決相應的問題.4、D【解析】【分析】根據(jù)題意作圖,可得出OP為∠AOB的角平分線,有,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)有兩種情況,依據(jù)所作圖形即可得解.【詳解】解:(1)以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,則OP為∠AOB的平分線,∴(2)兩弧在∠AOB內(nèi)交于點P,以O(shè)P為邊作∠POC=15°,則∠BOC=15°或45°,故選:D.【考點】本題考查的知識點是根據(jù)題意作圖并求解,依據(jù)題意作出正確的圖形是解題的關(guān)鍵.5、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應角相等就可以解決.二、填空題1、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.2、1【解析】【分析】先根據(jù)三角形面積公式計算出DE=

1,再根據(jù)角平分線的性質(zhì)得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD

DE

×

AB

=

2,

DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC

=×2×1=

1.故答案為:1.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,屬于基礎(chǔ)題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.3、2【解析】【分析】根據(jù)HL證明,可得,根據(jù)即可求解.【詳解】解:AB⊥AD,CE⊥BD,,在與中,,,AD=5,CD=7,,BD=CD=7,故答案為:2【考點】本題考查了全等三角形的性質(zhì)與判定,掌握HL證明三角形全等是解題的關(guān)鍵.4、8【解析】【分析】可先證明△BCE≌△CAD,可求得CE=AD,結(jié)合條件可求得CD,則可求得BE.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案為:8.【考點】本題主要考查全等三角形的判定和性質(zhì);證明三角形全等得出對應邊相等是解決問題的關(guān)鍵.5、【解析】【分析】根據(jù)全等三角形的性質(zhì)求出∠EAD=∠CAB,求出∠DAB=∠EAC

=50°,即可得到∠BAC的度數(shù).【詳解】解:∵ABC≌ADE,∴∠EAD=∠CAB,∴∠EAD﹣∠CAD=∠CAB﹣∠CAD,∴∠EAC=∠DAB,∵∠EAB=125°,∠CAD=25°,∴∠DAB=∠EAC=(125°﹣25°)=50°,∴∠BAC=50°+25°=75°.故答案為:75°.【考點】本題考查的是全等三角形的性質(zhì),掌握全等三角形的對應角相等是解題的關(guān)鍵.三、解答題1、(1)△EDF為等腰直角三角形,證明見解析;(2)四邊形AEDF面積不變,9.【解析】【分析】(1)連接AD,利用等腰直角三角形的性質(zhì)根據(jù)SAS證明△BDE≌△ADF,即可得到結(jié)論;(2)根據(jù)(1)得到S△BDE=S△ADF,推出S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,根據(jù)公式計算即可得到答案.【詳解】解:(1)△EDF為等腰直角三角形,理由如下:連接AD,∵AB=AC,∠BAC=90°,點D是BC中點,∴AD=BD=CD=BC,AD平分∠BAC,∴∠B=∠C=∠BAD=∠CAD=45°,∵點E、F速度都是1個單位秒,時間是t秒,∴BE=AF,又∵∠B=∠DAF=45°,AD=BD,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF.∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△EDF為等腰直角三角形;(2)四邊形AEDF面積不變,理由:∵由(1)可知,△BDE≌△ADF,∴S△BDE=S△ADF,∴S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,∴S四邊形AEDF=××AC×AB=9.【考點】此題考查等腰直角三角形的性質(zhì),等腰三角形三線合一的性質(zhì),全等三角形的判定及性質(zhì).2、(1)見解析;(2)∠CMQ=60°,不變;(3)當?shù)诿牖虻诿霑r,△PBQ為直角三角形;(4)∠CMQ=120°,不變.【解析】【分析】(1)利用SAS可證全等;(2)先證△ABQ≌△CAP,得出∠BAQ=∠ACP,通過角度轉(zhuǎn)化,可得出∠CMQ=60°;(3)存在2種情況,一種是∠PQB=90°,另一種是∠BPQ=90°,分別根據(jù)直角三角形邊直角的關(guān)系可求得t的值;(4)先證△PBC≌△ACQ,從而得出∠BPC=∠MQC,然后利用角度轉(zhuǎn)化可得出∠CMQ=120°.【詳解】(1)證明:在等邊三角形ABC中,AB=AC,∠B=∠CAP=60°又由題中“點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不變∵等邊三角形中,AB=AC,∠B=∠CAP=60°又由條件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)設(shè)時間為t,則AP=BQ=t,PB=4-t,①當∠PQB=90°時,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②當∠BPQ=90°時,∵∠B=60°,∴BQ=2BQ,得t=2(4-t),t=;∴當?shù)诿牖虻诿霑r,△PBQ為直角三角形;(4)∠CMQ=120°不變,∵在等邊三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由條件得BP=CQ,∴△PBC≌△ACQ(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°.【考點】本題考查動點問題中三角形的全等,解題關(guān)鍵是找出圖形中的全等三角形,利用全等三角形的性質(zhì)進行角度轉(zhuǎn)化,得出需要的結(jié)論.3、(1)證明見解析(2)【解析】【分析】(1)由“HL”可證Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠BAE的度數(shù),又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度數(shù),則由∠ACF=∠BCF+∠ACB即可求得答案.(1)∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL);(2)∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°?!逺t△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°【考點】此題考查了直角三角形全等的判定與性質(zhì).解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應用.4、(1)80;(2)是等邊三角形;(3).【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論