難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評練習(xí)題(解析版)_第1頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評練習(xí)題(解析版)_第2頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評練習(xí)題(解析版)_第3頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評練習(xí)題(解析版)_第4頁
難點詳解人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評練習(xí)題(解析版)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,△ABC中,已知∠B=∠C,點E,F(xiàn),P分別是AB,AC,BC上的點,且BE=CP,BP=CF,若∠A=112°,則∠EPF的度數(shù)是(

)A.34° B.36° C.38° D.40°2、如圖,在△ABC和△DEF中,AB=DE,ABDE,運用“SAS”判定△ABC≌△DEF,需補充的條件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE3、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°4、如圖,AD是的角平分線,,垂足為F,,和的面積分別為60和35,則的面積為A.25 B. C. D.5、如圖,已知,則圖中全等三角形的總對數(shù)是A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.2、如圖所示,點在一塊直角三角板上(其中),于點,于點,若,則_________度.3、在ABC中,AB=AC,點D在BC上(不與點B,C重合).只需添加一個條件即可證明ABD≌ACD,這個條件可以是________(寫出一個即可)4、如圖,的度數(shù)為___________.5、如圖,點B、C、E三點在同一直線上,且AB=AD,AC=AE,BC=DE,若,則∠3=______°.三、解答題(5小題,每小題10分,共計50分)1、如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點E,點F在AC上,BD=DF.(1)求證:CF=EB;(2)若AB=14,AF=8,求CF的長.2、某數(shù)學(xué)興趣小組在一次活動中進行了探究試驗活動,請你來加入.【探究與發(fā)現(xiàn)】(1)如圖1,AD是的中線,延長AD至點E,使,連接BE,證明:.【理解與應(yīng)用】(2)如圖2,EP是的中線,若,,設(shè),則x的取值范圍是________.(3)如圖3,AD是的中線,E、F分別在AB、AC上,且,求證:.3、如圖,在中,是邊上的一點,,平分,交邊于點,連接.(1)求證:;(2)若,,求的度數(shù).4、如圖所示,點M是線段AB上一點,ED是過點M的一條直線,連接AE、BD,過點B作BFAE交ED于F,且EM=FM.(1)若AE=5,求BF的長;(2)若∠AEC=90°,∠DBF=∠CAE,求證:CD=FE.5、如圖,在△ABC中,AB⊥AC,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于點E;(1)若B、C在DE的同側(cè)(如圖1所示)求證:DE=BD+CE;(2)若B、C在DE的兩側(cè)(如圖2所示),其他條件不變,則DE,BD,CE具有怎樣的等量關(guān)系?寫出等量關(guān)系,不需證明.-參考答案-一、單選題1、A【解析】【分析】由三角形內(nèi)角和定理可得∠B=∠C=34°,由△EBP≌△PCF可得∠EPB=∠PFC,再由三角形外角的性質(zhì)便可解答;【詳解】解:△BAC中,∠B=∠C,∠A=112°,則∠B=∠C=34°,△EBP和△PCF中:BE=CP,∠EBP=∠PCF,BP=CF,∴△EBP≌△PCF(SAS),∴∠EPB=∠PFC,∵∠BPF=∠EPB+∠EPF=∠C+∠PFC,∴∠EPF=∠C=34°,故選:A.【考點】本題考查了三角形內(nèi)角和定理,全等三角形的判定和性質(zhì),三角形外角的性質(zhì);掌握全等三角形的判定定理和性質(zhì)是解題關(guān)鍵.2、C【解析】【分析】證出∠ABC=∠DEF,由SAS即可得出結(jié)論.【詳解】解:補充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D選項不符合要求,若A:AC=DF,構(gòu)成的是SSA,不能證明三角形全等,A選項不符合要求,C選項:BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故選:C.【考點】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知“SAS”的判定的特點.3、D【解析】【分析】根據(jù)鄰補角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.4、D【解析】【分析】過點D作DH⊥AC于H,根據(jù)角平分線上的點到角的兩邊距離相等可得DF=DH,再利用“HL”證明Rt△ADF和Rt△ADH全等,Rt△DEF和Rt△DGH全等,然后根據(jù)全等三角形的面積相等列方程求解即可.【詳解】如圖,過點D作于H,是的角平分線,,,在和中,,≌,,在和中,≌,,和的面積分別為60和35,,=12.5,故選D.【考點】本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),全等三角形的判定與性質(zhì),熟記掌握相關(guān)性質(zhì)、正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.5、D【解析】【分析】根據(jù)全等三角形的判定方法進行判斷.全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件.【詳解】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故選D.【考點】本題主要考查了全等三角形的判定與性質(zhì)的運用,解題時注意:若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對應(yīng)相等,則必須再找一組對邊對應(yīng)相等,或者是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個角的另一組對應(yīng)鄰邊.二、填空題1、1【解析】【分析】先根據(jù)三角形面積公式計算出DE=

1,再根據(jù)角平分線的性質(zhì)得到點D到AB和AC的距離相等,然后利用三角形的面積公式計算△ADC的面積.【詳解】DE⊥AB,S△ABD

DE

×

AB

=

2,

DE==1,AD是△ABC的角平分線,點D到AB和AC的距離相等,點D到AC的距離為1,S△ADC

=×2×1=

1.故答案為:1.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,屬于基礎(chǔ)題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.2、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點】本題考查角平分線的定義及判定,熟練掌握“到一個角的兩邊距離相等的點在這個角的平分線上”是解題的關(guān)鍵.3、∠BAD=∠CAD(或BD=CD)【解析】【分析】證明ABD≌ACD,已經(jīng)具備根據(jù)選擇的判定三角形全等的判定方法可得答案.【詳解】解:要使則可以添加:∠BAD=∠CAD,此時利用邊角邊判定:或可以添加:此時利用邊邊邊判定:故答案為:∠BAD=∠CAD或()【考點】本題考查的是三角形全等的判定,屬開放性題,掌握三角形全等的判定是解題的關(guān)鍵.4、【解析】【分析】根據(jù)全等三角形的性質(zhì)求出∠EAD=∠CAB,求出∠DAB=∠EAC

=50°,即可得到∠BAC的度數(shù).【詳解】解:∵ABC≌ADE,∴∠EAD=∠CAB,∴∠EAD﹣∠CAD=∠CAB﹣∠CAD,∴∠EAC=∠DAB,∵∠EAB=125°,∠CAD=25°,∴∠DAB=∠EAC=(125°﹣25°)=50°,∴∠BAC=50°+25°=75°.故答案為:75°.【考點】本題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解題的關(guān)鍵.5、47【解析】【分析】根據(jù)“邊邊邊”證明,再根據(jù)全等三角形的性質(zhì)可得∠ABC=∠1,∠BAC=∠2,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角和求出∠3=∠1+∠2,然后求解即可.【詳解】解:在△ABC和△ADE中,,∴(SSS),∴∠ABC=∠1,∠BAC=∠2,∴∠3=∠ABC+∠BAC=∠1+∠2,∵,∴,∴.故答案為:47.【考點】本題主要考查了全等三角形的判定與性質(zhì)以及三角形的外角等于與它不相鄰的兩個內(nèi)角和的性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.三、解答題1、(1)見詳解(2)3【解析】【分析】(1)利用角平分線的性質(zhì)可得,再利用“HL”證明,再利用全等三角形的性質(zhì)求解;(2)利用“HL“證明,可得,設(shè),則,,即可建立方程求解.(1)證明:∵于點E,∴.又∵AD平分,,∴,在和中,,∴,∴;(2)解:在和中,,∴,∴,設(shè),則,,∴,解得,故.【考點】本題考查了直角三角形全等的判定與性質(zhì),角平分線的性質(zhì),在圖形中找到正確的全等三角形以及熟悉直角三角形全等的性質(zhì)與判定是關(guān)鍵.2、(1)見解析;(2);(3)見解析【解析】【分析】(1)根據(jù)全等三角形的判定即可得到結(jié)論;(2)延長至點,使,連接,根據(jù)全等三角形的性質(zhì)得到,根據(jù)三角形的三邊關(guān)系即可得到結(jié)論;(3)延長FD至G,使得,連接BG,EG,結(jié)合前面的做題思路,利用三角形三邊關(guān)系判斷即可.【詳解】(1)證明:,,,,(2);如圖,延長至點,使,連接,在與中,,,,在中,,即,的取值范圍是;故答案為:;(3)延長FD至G,使得,連接BG,EG,在和中,,,,,,在和中,,,,,,在中,兩邊之和大于第三邊,,又,,【考點】本題考查了全等三角形的判定和性質(zhì),三角形的中線的定義,三角形的三邊關(guān)系,正確的作出圖形是解題的關(guān)鍵.3、(1)見解析(2)50°【解析】【分析】(1)根據(jù)平分,可得,即可求證;(2)根據(jù)全等三角形的性質(zhì)可得,再由三角形外角的性質(zhì),即可求解.(1)明:∵平分,∴,在和中,∵,∴;(2)解:∵,∴,∵,∴.【考點】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理是解題的關(guān)鍵.4、(1)BF=5;(2)見解析.【解析】【分析】(1)證明△AEM≌△BFM即可;(2)證明△AEC≌△BFD,得到EC=FD,利用等式性質(zhì),得到CD=FE.【詳解】(1)∵BFAE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BFAE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.【考點】本題考查了平行線的性質(zhì),三角形全等的判定和性質(zhì),等式的性質(zhì),熟練掌握平行線性質(zhì),靈活進行三角形全等的判定是解題的關(guān)鍵.5、(1)見解析(2)DE=CE-BD【解析】【分析】(1)根據(jù)AAS證明△ADB≌△CEA,可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出結(jié)論;(2)由條件可以得出∠ADB=∠CEA=90°,∠BAD=∠ACE,再由AB=AC就可以得出△ADB≌△CEA,就可以得出BD=AE,AD=CE,由DE=AD+AE就可以得出DE=CE-BD.(1)∵AB⊥AC,BD⊥DE,CE⊥DE∴∠BAC=90°,∠ADB=∠AEC=90°∴∠ACE+∠CAE=90°,∠BAD+∠CAE=90°,∴∠BAD=∠ACE,在△ADC與△BEC中,∠ADB=∠AEC=90°,∠BAD=∠ACE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論