版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,AB是的直徑,弦CD交AB于點P,,,,則CD的長為()A. B. C. D.82、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°3、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°4、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形5、下表記錄了一名球員在罰球線上投籃的結(jié)果:投籃次數(shù)50100150200250400500800投中次數(shù)286387122148242301480投中頻率0.5600.6300.5800.6100.5920.6050.6020.600根據(jù)頻率的穩(wěn)定性,估計這名球員投籃一次投中的概率約是()A.0.560 B.0.580 C.0.600 D.0.6206、下列事件是隨機事件的是()A.拋出的籃球會下落B.經(jīng)過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內(nèi)角和是D.400人中有兩人的生日在同一天7、在一個不透明的口袋中裝有3張完全相同的卡片,卡片上面分別寫有數(shù)字,0,2,從中隨機抽出兩張不同卡片,則下列判斷正確的是()A.?dāng)?shù)字之和是0的概率為0 B.?dāng)?shù)字之和是正數(shù)的概率為C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為 D.?dāng)?shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率相同8、下列判斷正確的是()A.明天太陽從東方升起是隨機事件;B.購買一張彩票中獎是必然事件;C.?dāng)S一枚骰子,向上一面的點數(shù)是6是不可能事件;D.任意畫一個三角形,其內(nèi)角和是360°是不可能事件;第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在等腰直角中,已知,將繞點逆時針旋轉(zhuǎn)60°,得到,連接,若,則________.2、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.3、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.4、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為______.5、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機從袋子中摸出一球,摸到紅球的概率為_____.6、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計該種幼樹在此條件下移植成活的概率為_______.7、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機摸出兩個球,則摸到兩個都是紅球的概率是_______.三、解答題(7小題,每小題0分,共計0分)1、對于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關(guān)聯(lián)點”.已知點,,,.(1)直線l經(jīng)過點A,的半徑為2,在點A,C,D中,直線l和的“關(guān)聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關(guān)聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關(guān)聯(lián)點”在直線上,請直接寫出b的取值范圍.2、定理:一條弧所對的圓周角等于這條弧所對的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長.(2)當(dāng)點E在線段OA上時,若△DOE與△AEC相似,求∠DCA的正切值.(3)當(dāng)OE=1時,求點A與點D之間的距離(直接寫出答案).3、隨著科技的發(fā)展,溝通方式越來越豐富.一天,甲、乙兩位同學(xué)同步從“微信”“QQ”,“電話”三種溝通方式中任意選一種與同學(xué)聯(lián)系.(1)用恰當(dāng)?shù)姆椒信e出甲、乙兩位同學(xué)選擇溝通方式的所有可能;(2)求甲、乙兩位同學(xué)恰好選擇同一種溝通方式的概率.4、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.5、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)6、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當(dāng)BF+CE最小時,直接出的值.7、如圖,的直徑cm,AM和BN是它的切線,DE與相切于點E,并與AM,BN分別相交于D,C兩點.設(shè),,求y關(guān)于x的函數(shù)解析式.-參考答案-一、單選題1、A【分析】過點作于點,連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長.【詳解】解:如圖,過點作于點,連接,AB是的直徑,,,,在中,故選A【點睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.2、C【分析】,,,進(jìn)而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內(nèi)接四邊形中對角互補.解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.3、B【分析】求出正五邊形的一個內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內(nèi)角度數(shù)是解決問題的關(guān)鍵.4、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關(guān)鍵.5、C【分析】根據(jù)頻率估計概率的方法并結(jié)合表格數(shù)據(jù)即可解答.【詳解】解:∵由頻率分布表可知,隨著投籃次數(shù)越來越大時,頻率逐漸穩(wěn)定到常數(shù)0.600附近,∴這名球員在罰球線上投籃一次,投中的概率為0.600.故選:C.【點睛】本題主要考查了利用頻率估計概率,概率的得出是在大量實驗的基礎(chǔ)上得出的,不能單純的依靠幾次決定.6、B【分析】根據(jù)事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經(jīng)過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內(nèi)角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關(guān)鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.7、A【分析】列樹狀圖,得到共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,依次判斷即可.【詳解】解:列樹狀圖如下:共有6種等可能的情況,和為正數(shù)的有4種情況,和為負(fù)數(shù)的有2種情況,A.數(shù)字之和是0的概率為0,故該項符合題意;B.數(shù)字之和是正數(shù)的概率為,故該項不符合題意;C.卡片上面的數(shù)字之和是負(fù)數(shù)的概率為,故該項不符合題意;D.數(shù)字之和分別是負(fù)數(shù)、0、正數(shù)的概率不相同,故該項不符合題意;故選:A.【點睛】此題考查了列樹狀圖求事件的概率,概率的計算公式,正確列出樹狀圖解答是解題的關(guān)鍵.8、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項錯誤,不符合題意;B、購買一張彩票中獎是隨機事件,故本選項錯誤,不符合題意;C、擲一枚骰子,向上一面的點數(shù)是6是隨機事件,故本選項錯誤,不符合題意;D、任意畫一個三角形,其內(nèi)角和是360°是不可能事件,故本選項正確,符合題意;故選:D【點睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關(guān)鍵.二、填空題1、【分析】如圖連接并延長,過點作交于點,,由題意可知為等邊三角形,,,在中;在中計算求解即可.【詳解】解:如圖連接并延長,過點作交于點,由題意可知,,為等邊三角形在中在中故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形,勾股定理,含的直角三角形等知識.解題的關(guān)鍵在于做輔助線構(gòu)造直角三角形.2、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質(zhì)得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當(dāng)時,的值最小,解直角三角形即可得到結(jié)論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當(dāng)時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.3、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.4、110°【分析】根據(jù)圓內(nèi)接四邊形對角互補,得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內(nèi)接四邊形互補的性質(zhì),熟練掌握并運用性質(zhì)是解題的關(guān)鍵.5、【分析】讓紅球的個數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個數(shù)為3個,球的總數(shù)為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點睛】本題考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、0.880【分析】大量重復(fù)實驗的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復(fù)實驗的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時,可以用這一穩(wěn)定值估計事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點睛】此題主要考查了利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.7、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.三、解答題1、(1)C(2)(3)【分析】(1)作出圖形,根據(jù)切線的定義結(jié)合“關(guān)聯(lián)點”即可求解;(2)根據(jù)題意,為等邊三角形,則僅與相切時,和有“關(guān)聯(lián)點”,進(jìn)而求得半徑r的取值范圍;(3)根據(jù)關(guān)聯(lián)點以及切線的性質(zhì),直徑所對的角是直角,找到點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,進(jìn)而即可求得的值.(1)解:如圖,,,,,,軸,.的半徑為2,直線與相切直線l和的“關(guān)聯(lián)點”是點故答案為:(2)如圖,根據(jù)題意與有“關(guān)聯(lián)點”,則與相切,且與相離,是等邊三角形為的中點,則當(dāng)與相切時,則點為的內(nèi)心半徑r的取值范圍為:(3)如圖,設(shè)和直線m的“關(guān)聯(lián)點”為,,交軸于點,是的切線,的圓心為點,半徑為t,軸是的切線點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,則點,在直線上,當(dāng)直線與相切時,即當(dāng)點與點重合時,最大,此時與軸交于點,當(dāng)點運動到點時,則過點,則解得b的取值范圍為:【點睛】本題考查了切線的性質(zhì)與判定,切線長定理,勾股定理,一次函數(shù)與坐標(biāo)軸交點問題,等邊三角形的性質(zhì),等邊三角形的內(nèi)心的性質(zhì),掌握以上知識是解題的關(guān)鍵.2、(1)8(2)(3)或.【分析】(1)過點O作OH⊥AC于點H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長,即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點O作OH⊥AC于點H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當(dāng)△DOE與△AEC相似時可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當(dāng)△DOE與△AEC相似時,不存在∠DOE=∠ACD情況,∴當(dāng)△DOE與△AEC相似時,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當(dāng)點E在線段OA上時,如圖3,過點E作EG⊥AC于G,過點O作OH⊥AC于H,延長AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當(dāng)點E在線段AO的延長線上時,如圖4,延長AO交⊙O于M,連接AD,DM,過點E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,綜上所述:AD的長是或【點睛】本題考查了垂徑定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性質(zhì)與判定,圓周角定理,正切的作出輔助線是解題的關(guān)鍵.3、(1)3種可能,分別是“微信”“QQ”,“電話”(2)【分析】(1)用例舉法可得甲,乙兩位同學(xué)選擇溝通方式都有3種可能.(2)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.(1)解:甲,乙兩位同學(xué)選擇溝通方式都有3種可能,分別是“微信”“QQ”,“電話”.(2)解:畫出樹狀圖,如圖所示所有情況共有9種情況,其中恰好選擇同一種溝通方式的共有3種情況,故兩人恰好選中同一種溝通方式的概率為.【點睛】本題考查了判斷簡單隨機事件的可能性,利用列表法與樹狀圖法求解等可能事件的概率;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.4、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)(2)此游戲公平,理由見解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列舉出所有可能,進(jìn)而利用概率公式進(jìn)而得出甲、乙獲勝的概率即可得出答案.(1)解:第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為,故答案為:.(2)解:列表如下:01-2301-231-1-32-22353-3-2-5由表可知,共有12種等可能結(jié)果,其中結(jié)果為非負(fù)數(shù)的有6種結(jié)果,結(jié)果為負(fù)數(shù)的有6種結(jié)果,所以甲獲勝的概率=乙獲勝的概率==,∴此游戲公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個參與者取勝的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當(dāng)BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當(dāng)點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當(dāng)BE在∠ABC的平分線上時,與BE在△ABC外部時,當(dāng)當(dāng)BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年博思睿人力招聘(派遣至浙江大學(xué)國際聯(lián)合商學(xué)院)備考題庫及1套參考答案詳解
- 馬邊彝族自治縣公安局2025年第3批次輔警招聘備考題庫及1套參考答案詳解
- 2025年衛(wèi)生健康局招聘備考題庫完整參考答案詳解
- 2025年屯昌縣中醫(yī)醫(yī)院招聘編外護(hù)理人員備考題庫及完整答案詳解一套
- 2025年興山縣公安局招聘輔警8人備考題庫附答案詳解
- 黃石市教育局直屬高中2026年公費師范畢業(yè)生招聘6人備考題庫參考答案詳解
- 2025年廣州花都城投住宅建設(shè)有限公司公開招聘廣州花都城市環(huán)保投資有限公司項目用工人員6人備考題庫附答案詳解
- 2025年榆林市橫山區(qū)南塔衛(wèi)生院招聘備考題庫及答案詳解一套
- 2025年中國科學(xué)院大學(xué)招聘備考題庫及一套參考答案詳解
- 2025年中國電建集團(tuán)昆明勘測設(shè)計研究院有限公司(中國水利水電建設(shè)工程咨詢昆明有限公司社會招聘備考題庫)及答案詳解參考
- 2025四川成都東部新區(qū)招聘編外工作人員29人筆試考試參考試題及答案解析
- 國家開放大學(xué)2025年秋《馬克思主義基本原理概論》終考大作業(yè)試題A參考答案
- 《11845丨中國法律史(統(tǒng)設(shè)課)》機考題庫
- (新教材)2025年部編人教版一年級上冊語文第六單元復(fù)習(xí)課件
- 支部共建活動協(xié)議書
- 社會保障學(xué)-終考測試-國開(ZJ)-參考資料
- 廣東省領(lǐng)航高中聯(lián)盟2025-2026學(xué)年高三上學(xué)期12月聯(lián)考地理試卷(含答案)
- 堤防工程施工規(guī)范(2025版)
- GA 38-2021銀行安全防范要求
- 精裝修工程試驗檢測計劃
評論
0/150
提交評論