遼寧省北鎮(zhèn)市中考數(shù)學(xué)測試卷及答案詳解(必刷)_第1頁
遼寧省北鎮(zhèn)市中考數(shù)學(xué)測試卷及答案詳解(必刷)_第2頁
遼寧省北鎮(zhèn)市中考數(shù)學(xué)測試卷及答案詳解(必刷)_第3頁
遼寧省北鎮(zhèn)市中考數(shù)學(xué)測試卷及答案詳解(必刷)_第4頁
遼寧省北鎮(zhèn)市中考數(shù)學(xué)測試卷及答案詳解(必刷)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

遼寧省北鎮(zhèn)市中考數(shù)學(xué)測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達式為(

)A. B. C. D.2、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.53、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.4、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設(shè)點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.5、如圖,點A,B的坐標(biāo)分別為,點C為坐標(biāo)平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結(jié)論中,正確的是(

)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD2、關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.當(dāng)c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標(biāo)是;D.當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.3、如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+4、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中正確的是(

)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE5、已知點,下面的說法正確的是(

)A.點與點關(guān)于軸對稱,則點的坐標(biāo)為B.點繞原點按順時針方向旋轉(zhuǎn)后到點,則點的坐標(biāo)為C.點與點關(guān)于原點中心對稱,則點的坐標(biāo)為D.點先向上平移個單位,再向右平移個單位到點,則點的坐標(biāo)為第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.2、將拋物線向上平移()個單位長度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號)①0<p<1-;

②1-<p<1;

③q<n;

④q>2k-k.3、已知關(guān)于的方程的一個根是,則____.4、如圖,I是△ABC的內(nèi)心,∠B=60°,則∠AIC=_____.5、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.四、簡答題(2小題,每小題10分,共計20分)1、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標(biāo).2、已知==,求的值.五、解答題(4小題,每小題10分,共計40分)1、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.2、在所給的的正方形網(wǎng)格中,按下列要求操作:(單位正方形的邊長為1)(1)請在第二象限內(nèi)的格點上找一點,使是以為底的等腰三角形,且腰長是無理數(shù),求點的坐標(biāo);(2)畫出以點為中心,旋轉(zhuǎn)180°后的,并求的面積.3、如圖,和中,,,,連接,點M,N,P分別是的中點.(1)請你判斷的形狀,并證明你的結(jié)論.(2)將繞點A旋轉(zhuǎn),若,請直接寫出周長的最大值與最小值.4、用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).-參考答案-一、單選題1、B【解析】【分析】先求出平移后拋物線的頂點坐標(biāo),進而即可得到答案.【詳解】解:∵的頂點坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.2、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.4、A【分析】設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而求解此時的函數(shù)解析式,當(dāng)在上時,延長交于點過作于并求解此時的函數(shù)解析式,當(dāng)在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當(dāng)在上時,過作于而當(dāng)在上時,延長交于點過作于同理:則為等邊三角形,當(dāng)在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.5、B【解析】【分析】如圖所示,取AB的中點N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點,∴ON=,又∵M為AC的中點,∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時,OM=ON+MN最大.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理逐個判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據(jù)條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點】本題主要考查的是對垂徑定理的記憶與理解,做題的關(guān)鍵是掌握垂徑定理的應(yīng)用.2、ABD【解析】【分析】根據(jù)c與0的關(guān)系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標(biāo)與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當(dāng)a<0時,函數(shù)圖象最高點的縱坐標(biāo)是;當(dāng)a>0時,函數(shù)圖象最低點的縱坐標(biāo)是;由于a值不定,故無法判斷最高點或最低點;D.當(dāng)b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當(dāng)a<0時,函數(shù)的最大值是;當(dāng)a>0時,函數(shù)的最小值是是解題關(guān)鍵.3、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應(yīng),同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.4、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關(guān)鍵.5、BD【解析】【分析】A、根據(jù)軸對稱的性質(zhì)判斷即可;B、根據(jù)旋轉(zhuǎn)變換的性質(zhì)判斷即可;C、根據(jù)中心對稱的性質(zhì)判斷即可;D、根據(jù)平移變換的性質(zhì)判斷即可;【詳解】A、點A與點B關(guān)于軸對稱,則點B的坐標(biāo)為B(-2,-3),A選項錯誤,不符合題意;B、點繞原點按順時針方向旋轉(zhuǎn)后到點,則點的坐標(biāo)為,B選項正確,符合題意;C、點與點關(guān)于原點中心對稱,則點的坐標(biāo)為B(2,-3),C選項錯誤,不符合題意;D、點先向上平移個單位,再向右平移個單位到點,則點的坐標(biāo)為,D選項正確,符合題意;故選:BD【考點】本題考查平移變換,軸對稱變換,中心對稱,旋轉(zhuǎn)變換等知識,解題的關(guān)鍵是熟練掌握平移變換,旋轉(zhuǎn)變換,軸對稱變換,中心對稱的性質(zhì),屬于??碱}型.三、填空題1、【解析】【分析】根據(jù)已知建立平面直角坐標(biāo)系,進而求出二次函數(shù)解析式,再通過把代入拋物線解析式得出水面寬度,即可得出答案.【詳解】建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,拋物線以y軸為對稱軸,且經(jīng)過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標(biāo)為通過以上條件可設(shè)頂點式,其中可通過代入A點坐標(biāo)代入到拋物線解析式得出:所以拋物線解析式為當(dāng)水面下降2米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:當(dāng)時,對應(yīng)的拋物線上兩點之間的距離,也就是直線與拋物線相交的兩點之間的距離,可以通過把代入拋物線解析式得出:解得:

所以水面寬度增加到米,比原先的寬度當(dāng)然是增加了故答案是:【考點】考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵.2、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當(dāng)時拋物線和反比例函數(shù)圖象上的點的縱坐標(biāo)的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點個數(shù),再利用拋物線的對稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對稱軸為,頂點坐標(biāo)為(1,),將該拋物線向上平移()個單位長度,則頂點坐標(biāo)為(1,),當(dāng)時,反比例函數(shù)圖象上點的坐標(biāo)為(1,),如圖所示,拋物線平移后的頂點縱坐標(biāo)即為m,反比例函數(shù)上橫坐標(biāo)為1的點的縱坐標(biāo)即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個交點,且該交點橫坐標(biāo)大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點P(p,q),M(1+,n),∴點M為拋物線右支與反比例函數(shù)圖象的交點,∴點P為拋物線左支與反比例函數(shù)圖象的交點,由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個交點分別位于拋物線的左支和右支上,再利用拋物線的軸對稱性和反比例函數(shù)圖像的增減性進行判斷.3、【解析】【分析】根據(jù)一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關(guān)于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據(jù)一元二次方程的解,求參數(shù)的值,掌握一元二次方程解的定義是解決此題的關(guān)鍵.4、120°.【解析】【分析】根據(jù)三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點即可求解.【詳解】∵∠B=60°,∴∠BAC+∠BCA=120°∵三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點,∴∠IAC=∠BAC,∠ICA=∠BCA,∴∠IAC+∠ICA=(∠BAC+∠BCA)=60°∴∠AIC=180°﹣60°=120°故答案為120°.【考點】此題主要考查利用三角形的內(nèi)切圓的圓心是三角形三個角的平分線的交點性質(zhì)進行角度求解,熟練掌握,即可解題.5、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關(guān)鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.四、簡答題1、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標(biāo).【詳解】解:(1)作CM⊥y軸于M,如圖,當(dāng)x=0時,y=x+2=2,則A(0,2),當(dāng)y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度2、-1【解析】【分析】設(shè)===k,則a+b=3k,b+c=4k,c+a=5k,把三式相加得到a+b+c=6k,再利用加減消元法可計算出a=2k,b=k,c=3k,然后把a=2k,b=k,c=3k代入中進行分式的化簡求值即可.【詳解】解:設(shè)===k,則a+b=3k,b+c=4k,c+a=5k,三式相加得a+b+c=6k①用①式分別減去上述三個式子,可得出解得a=2k,b=k,c=3k,所以==-1.【考點】本題考查了比例的性質(zhì),掌握設(shè)比法求值是解題關(guān)鍵.五、解答題1、(1)見解析;(2)【分析】(1)連接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,從而可證得△OBC≌△ODC,即可證得CD是⊙O的切線;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,從而可得,則可求得OC的長.【詳解】(1)連接OD,∵,∴.又∵,∴,∴.在與中,∴,∴.又∵,∴,∴是的切線.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【點睛】本題是圓的綜合,它考查了切線的判定,三角形全等的判定與性質(zhì),相似三角形的判定與性質(zhì)等知識;證明圓的切線時,往往作半徑.2、(1)圖見解析,點的坐標(biāo)為(2)圖見解析,4【分析】(1)根據(jù)題意,腰長為無理數(shù)且為以AB為底的等腰三角形,只在第二象限,作圖即可確定點,然后寫出點的坐標(biāo)即可;(2)現(xiàn)確定旋轉(zhuǎn)后的點,然后依次連接即可,根據(jù)旋轉(zhuǎn)前后三角形的面積不變,利用表格及勾股定理確定三角形的底和高,即可得出面積.(1)解:如圖所示,點的坐標(biāo)為;,為無理數(shù),符合題意;(2)如圖所示:點的坐標(biāo),點的坐標(biāo)為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論