難點解析京改版數學9年級上冊期末測試卷帶答案詳解(精練)_第1頁
難點解析京改版數學9年級上冊期末測試卷帶答案詳解(精練)_第2頁
難點解析京改版數學9年級上冊期末測試卷帶答案詳解(精練)_第3頁
難點解析京改版數學9年級上冊期末測試卷帶答案詳解(精練)_第4頁
難點解析京改版數學9年級上冊期末測試卷帶答案詳解(精練)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、二次函數y=x2+px+q,當0≤x≤1時,此函數最大值與最小值的差(

)A.與p、q的值都有關 B.與p無關,但與q有關C.與p、q的值都無關 D.與p有關,但與q無關2、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似3、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,則()A. B. C. D.4、如圖,撬釘子的工具是一個杠桿,動力臂,阻力臂,如果動力F的用力方向始終保持豎直向下,當阻力不變時,則杠桿向下運動時的動力變化情況是(

)A.越來越小 B.不變 C.越來越大 D.無法確定5、如圖,已知動點,分別在軸,軸正半軸上,動點在反比例函數圖象上,軸,當點的橫坐標逐漸增大時,的面積將會()A.越來越小 B.越來越大C.不變 D.先變大后變小6、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-2二、多選題(7小題,每小題2分,共計14分)1、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結論正確的是(

)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD2、如圖,下列條件能判定△ABC與△ADE相似的是(

)A. B.∠B=∠ADEC. D.∠C=∠AED3、在Rt△ABC中,∠C=90°,∠A、∠B、∠C所對的邊分別為a、b、c,下列等式一定不能成立的有()A.sinA=sinB B.a=c?sinBC.sin2A+cos2B=1 D.sinA=tanA?cosA4、下列說法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經過這條弦所在圓的圓心D.在一個圓內平分一條弧和平分它所對的弦的直線必經過這個圓的圓心5、下列多邊形中,一定不相似的是(

)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形6、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:47、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構成的圖形記作C2,將C1和C2構成的圖形記作C3.關于圖形C3,給出的下列四個結論,正確的是(

)A.圖形C3恰好經過4個整點(橫、縱坐標均為整數的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、兩個任意大小的正方形,都可以適當剪開,拼成一個較大的正方形,如用兩個邊長分別為,的正方形拼成一個大正方形.圖中的斜邊的長等于________(用,的代數式表示).2、如圖,在平面直角坐標系中,一次函數的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉,交軸于點,則直線的函數表達式是__________.3、如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___

4、如圖,點P,A,B,C在同一平面內,點A,B,C在同一直線上,且PC⊥AC,在點A處測得點P在北偏東60°方向上,在點B處測得點P在北偏東30°方向上,若AP=12千米,則A,B兩點的距離為___千米.5、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結果保留)6、如圖,點C在線段上,且,分別以、為邊在線段的同側作正方形、,連接、,則_________.7、某圓的周長是12.56米,那么它的半徑是______________,面積是__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,矩形在平面直角坐標系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標;(2)求直線移動過程中到點之前的關于的函數關系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標;若不存在,說明理由2、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.3、如圖,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,點O在射線AC上(點O不與點A重合),垂足為D,以點O為圓心,分別交射線AC于E、F兩點,設OD=x.(1)如圖1,當點O為AC邊的中點時,求x的值;(2)如圖2,當點O與點C重合時,連接DF;求弦DF的長;(3)當半圓O與BC無交點時,直接寫出x的取值范圍.4、某商場購進甲、乙兩種商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙兩種商品每箱各盈利多少元?(2)甲、乙兩種商品全部售完后,該商場又購進一批甲商品,在原每箱盈利不變的前提下,平均每天可賣出100箱.如調整價格,每降價1元,平均每天可以多賣出20箱,那么當降價多少元時,該商場利潤最大?最大利潤是多少?5、根據下列條件,求二次函數的解析式.(1)圖象經過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經過點(3,1);6、某廠家生產一批遮陽傘,每個遮陽傘的成本價是20元,試銷售時發(fā)現(xiàn):遮陽傘每天的銷售量y(個)與銷售單價x(元)之間是一次函數關系,當銷售單價為28元時,每天的銷售量為260個;當銷售單價為30元時,每天的銷售量為240個.(1)求遮陽傘每天的銷出量y(個)與銷售單價x(元)之間的函數關系式;(2)設遮陽傘每天的銷售利潤為w(元),當銷售單價定為多少元時,才能使每天的銷售利潤最大?最大利潤是多少元?-參考答案-一、單選題1、D【解析】【分析】分別求出函數解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數值.由二次函數性質可知此函數最大值與最小值必是其中的兩個,通過比較可知差值與p有關,但與q無關【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數最小值,由二次函數的最值性質可知,當0≤x≤1時,此函數最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關,但與q無關故選:.【考點】本題考查了二次函數的最值問題,掌握二次函數的性質、靈活運用配方法是解題的關鍵.2、C【解析】【分析】直接利用相似圖形的性質分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關鍵.3、C【解析】【分析】根據Rt△ABC中,cos

B,tan

B,sin

A的定義,進行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin

B=,tanB=,∴選項C正確,選項A、B、D錯誤,故選C.【考點】本題考查了銳角三角函數的定義.關鍵是熟練掌握銳角三角函數的定義及其變形.4、A【解析】【分析】根據杠桿原理及的值隨著的減小而增大結合反比例函數的增減性即可求得答案.【詳解】解:∵動力×動力臂=阻力×阻力臂,∴當阻力及阻力臂不變時,動力×動力臂為定值,且定值>0,∴動力隨著動力臂的增大而減小,∵杠桿向下運動時的度數越來越小,此時的值越來越大,又∵動力臂,∴此時動力臂也越來越大,∴此時的動力越來越小,故選:A.【考點】本題主要考查了杠桿原理以及銳角三角函數和反比例函數的增減性,熟練掌握相關知識是解決本題的關鍵.5、C【解析】【分析】設點,作可得,根據可得答案.【詳解】解:如圖,過點作于點,則,設點,則,當點的橫坐標逐漸增大時,的面積將會不變,始終等于,故選:.【考點】本題主要考查反比例函數系數的幾何意義,熟練掌握在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是,且保持不變.6、D【解析】【分析】根據拋物線C1的解析式得到頂點坐標,利用二次函數平移的規(guī)律:左加右減,上加下減,并根據平移前后二次項的系數不變可得拋物線C2的頂點坐標,再根據關于x軸對稱的兩條拋物線的頂點橫坐標相等,縱坐標互為相反數,二次項系數互為相反數可得到拋物線C3所對應的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標為(0,2)∵拋物線C2與拋物線C3關于x軸對稱∴拋物線C3的橫坐標不變,縱坐標互為相反數,二次項系數互為相反數∴拋物線C3的頂點坐標為(0,-2),二次項系數為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關于x軸對稱的兩條拋物線的頂點的橫坐標相等,縱坐標互為相反數,二次項系數互為相反數是解題的關鍵.二、多選題1、ABCD【解析】【分析】選項A:連接OE,利用切線長定理得到AD=ED,CE=CB,可得AD+BC=CD.選項B:OD、OC分別為角平分線,利用平角的定義及等式性質得到∠COD為直角,選項C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據等量代換即可得出C選項正確.選項D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關系式,根據CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項D正確;故答案為:ABCD.【考點】牢記切線的性質,相似三角形的判定與性質,熟練掌握切線的性質是解本題的關鍵.2、ABD【解析】【分析】利用兩組對應邊的比相等且夾角對應相等的兩個三角形相似可對A、C進行判斷;根據有兩組角對應相等的兩個三角形相似可對B、C進行判斷.【詳解】解:∵∠EAD=∠BAC,當,∠A=∠A,∴△ABC∽△ADE,故選項A符合題意;當∠B=∠ADE時,△ABC∽△ADE,故選項B符合題意;C選項中角A不是成比例的兩邊的夾角,故選項C不符合題意;當∠C=∠AED時,△ABC∽△ADE,故選項D符合題意;故選:ABD.【考點】本題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.3、ABC【解析】【分析】在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.【詳解】解:、時,,故錯誤,符合題意;、,故錯誤,符合題意;、,胡錯誤,符合題意;、,故正確,不符合題意;故選:ABC.【考點】本題考查銳角三角函數的定義及運用,解題的關鍵是掌握在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.4、ABC【解析】【分析】根據垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經過這條弦所在的圓心,應該是:弦的垂直平分線必經過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內,平分一條弧和它所對弦的直線必經過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理及其推論.5、ABD【解析】【分析】利用相似多邊形的對應邊的比相等,對應角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應角是否相等,對應邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應角、對應邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應角都是90°,對應邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據是:對應邊的比相等,對應角相等.兩個條件必須同時具備.6、ABCD【解析】【分析】根據圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質;2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應邊的比的平方;4、等邊三角形的高=邊長×sin60°.7、ABD【解析】【分析】畫出圖象C3,以及以O為圓心,以1為半徑的圓,再作出⊙O內接正方形,根據圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數的圖象與幾何變換,數形結合是解題的關鍵.三、填空題1、【解析】【分析】根據題意及勾股定理可得BC2=;又因Rt△ABC的邊BC在斜邊AB上的射影為a,根據射影定理可得BC2=a?AB,由此即可解答.【詳解】根據題意及勾股定理可得:BC2=;由題意可得:Rt△ABC的邊BC在斜邊AB上的射影為a,∴BC2=a?AB,即可得AB=.故答案為.【考點】本題考查射影定理的知識,注意掌握每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項.2、【解析】【分析】先根據一次函數求得、坐標,再過作的垂線,構造直角三角形,根據勾股定理和正余弦公式求得的長度,得到點坐標,從而得到直線的函數表達式.【詳解】因為一次函數的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設,則,根據等面積可得:,即,解得.則,即,所以直線的函數表達式是.【考點】本題綜合考察了一次函數的求解、勾股定理、正余弦公式,以及根據一次函數的解求一次函數的表達式,要學會通過作輔助線得到特殊三角形,以便求解.3、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點】本題考查了平行線分線段成比例,平行四邊形的性質,關鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.4、【解析】【分析】根據題意和題目中的數據,可以計算出AC和BC的長,然后即可得到AB的長,從而可以解答本題.【詳解】解:∵PC⊥AC,在點A處測得點P在北偏東60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在點B處測得點P在北偏東30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案為:.【考點】本題考查解直角三角形的應用-方向角問題,解答本題的關鍵是明確題意,利用數形結合的思想解答.5、【解析】【分析】由,根據圓周角定理得出,根據S陰影=S扇形AOB-可得出結論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據題意求得三角形與扇形的面積是解答此題的關鍵.6、【解析】【分析】設BC=a,則AC=2a,然后利用正方形的性質求得CE、CG的長、∠GCD=ECD=45°,進而說明△ECG為直角三角形,最后運用正切的定義即可解答.【詳解】解:設BC=a,則AC=2a∵正方形∴EC=,∠ECD=同理:CG=,∠GCD=

∴.故答案為.【考點】本題考查了正方形的性質和正切的定義,根據正方形的性質說明△ECG是直角三角形是解答本題的關鍵.7、

2米

12.56平方米【解析】【分析】根據周長公式轉化為,將C=12.56代入進行計算得到半徑,繼續(xù)利用面積公式,代入半徑的值求出面積的結果.【詳解】因為C=2πr,所以==2,所以r=2(米),因為S=πr2=3.14×22=12.56(平方米).故答案為:2米

12.56平方米.【考點】考查圓的面積和周長與半徑之間的關系,學生必須熟練掌握圓的面積和周長的求解公式,選擇相應的公式進行計算,利用公式是解題的關鍵.四、解答題1、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長,再由勾股定理即可求出BO的長,即可求出A和B點坐標.(2)P點從原點出發(fā),在到達終點前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點作DF⊥x軸,易證,求出CF=AO,進而求出OF的長;由,故,求出OE的長,進而求出OB+OE=BE.(3)分類討論,當B為直角頂角時,過Q1點作QH⊥y軸,此時△Q1HB≌△BOC,即可求出Q1的坐標;當Q2為直角頂角時,過Q2點作QM⊥y軸,QN⊥x軸,此時Q2MB≌Q2NC,即可求出Q2的坐標.【詳解】解:(1)由題意可得故答案為:(2)過點作軸,垂足為F,則

∴∵∴,故,求得.當時,直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當B為直角頂角時,此時BQ1=BC,過Q1點作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情況二:當Q2為直角頂角時,此時有Q2B=Q2C,過Q2點分別作Q2M⊥y軸,Q2N⊥x軸∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四邊形Q2MON為正方形,設MB=NC=a則OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案為:和【考點】本題考查了三角函數求值、平行四邊形的面積公式、三角形全等、等腰直角三角形等相關知識,利用銳角相等,其對應的三角函數值相同,可列出比例求解未知線段長.2、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(2)求出的P點坐標進行數形結合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經過點A(-3,0)時,d=;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數根,解△=9+8(2d+6)=0得d=,∴點P的坐標為().①當直線l經過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當直線l經過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經過點A(-3,0)開始向下平移到直線l經過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當直線l經過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;當直線l繼續(xù)向下平移的過程中經過點P(),直線l與這個新圖象有且只有三個公共點,可得d=;∴要使直線l與這個新圖象有四個公共點則d的取值范圍是<d<.【考點】本題考查的是二次函數綜合運用,關鍵是通過數形變換,確定變換后圖形與直線的位置關系.3、(1);(2);(3)滿足條件的x取值范圍為:0<x<3或x>12.【解析】【分析】(1)先求出OA,再判斷出,得出比例式求出x的值,即可得出結論;(2)先利用等面積求出x知,再判斷出,進而求出DH,OH,最后用勾股定理求出DF,即可得出結論;(3)分兩種情況:點O在邊AC上和在AC的延長線上,找出分界點,求出x值,即可得出結論.【詳解】(1)在Rt△ABC中,AB=10,根據勾股定理得,,∵點O為AC邊的中點,∴AO=AC=,∵OD⊥AB,∠ACB=90°,∴∠ADO=∠ACB,又∵∠A=∠A,∴.∴,∴,∴.(2)如圖,過點D作DH⊥AC于H,∵點O與點C重合,∴S△ABC=OD?AB=,即10x=8×6,∴.∵DH⊥AC于H,∴∠DHO=∠ACB=90°,∴∠DOH+∠BOD=∠BOD+∠ABC,∴∠DOH=∠ABC,∴.∴,∴,∴,.∵OF=OD=,∴FH=OH+OF=.∴在Rt△DFH中,根據勾股定理得,∴.(3)如圖,當點O在邊AC上,且半圓O與AB,∴OC=OD=x,∴AO=AC﹣OC=8﹣x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=3,∴0<x<3,如圖,當點O在AC的延長線上,且半圓O與AB,∴OC=OD=x,∴AO=AC+OC=8+x,∵∠ADO=∠ACB=90°,∠A=∠A,∴,∴,∴,∴x=12,即滿足條件的x取值范圍為:0<x<3或x>12.【考點】此題是圓的綜合題,主要考查了勾股定理,相似三角形的判定和性質,用分類討論的思想和方程的思想解決問題是解本題的關鍵.4、(1)甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)當降價5元時,該商場利潤最大,最大利潤是2000元.【解析】【分析】(1)設甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據題意列出方程,解方程即可得出結論;(2)設甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,根據題意列出函數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論