難點解析-京改版數(shù)學(xué)9年級上冊期末試卷附答案詳解(模擬題)_第1頁
難點解析-京改版數(shù)學(xué)9年級上冊期末試卷附答案詳解(模擬題)_第2頁
難點解析-京改版數(shù)學(xué)9年級上冊期末試卷附答案詳解(模擬題)_第3頁
難點解析-京改版數(shù)學(xué)9年級上冊期末試卷附答案詳解(模擬題)_第4頁
難點解析-京改版數(shù)學(xué)9年級上冊期末試卷附答案詳解(模擬題)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、為了美觀,在加工太陽鏡時將下半部分輪廓制作成拋物線的形狀(如圖所示),對應(yīng)的兩條拋物線關(guān)于軸對稱,軸,,最低點在軸上,高,,則右輪廓所在拋物線的解析式為(

)A. B. C. D.2、已知為銳角,且,則()A. B. C. D.3、已知點都在反比例函數(shù)的圖象上,且,則下列結(jié)論一定正確的是(

)A. B. C. D.4、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°5、由二次函數(shù),可知(

)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當(dāng)x<3時,y隨x的增大而增大6、如圖,PAB為⊙O的割線,且PA=AB=3,PO交⊙O于點C,若PC=2,則⊙O的半徑的長為()A. B. C. D.7二、多選題(7小題,每小題2分,共計14分)1、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且2、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(

)A. B. C. D.3、如圖,正方形ABCD的邊長為8,點E、F分別在邊AD、BC上,將正方形沿EF折疊,使點A落在邊CD上的A′處,點B落在B′處,A′B′交BC于點G.下列結(jié)論正確的是(

)A.當(dāng)A′為CD中點時,tan∠DA′E=B.當(dāng)A′D∶DE∶A′E=3∶4∶5時,A′C=C.連接AA′,則AA′=EFD.當(dāng)A′(點A′不與C、D重合)在CD上移動時,△A′CG周長隨著A′位置變化而變化4、如圖所示,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使與相似,可以添加一個條件下列添加的條件中正確的是(

)A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD?CD5、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標(biāo)為,與軸的一個交點在點和點之間,給出的四個結(jié)論中正確的有(

)A. B.C. D.時,方程有解6、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構(gòu)成的圖形記作C2,將C1和C2構(gòu)成的圖形記作C3.關(guān)于圖形C3,給出的下列四個結(jié)論,正確的是(

)A.圖形C3恰好經(jīng)過4個整點(橫、縱坐標(biāo)均為整數(shù)的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π7、如圖,在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,下面等式中正確的是(

)A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、二次函數(shù)的最小值為______.2、如圖,已知P是函數(shù)y1圖象上的動點,當(dāng)點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數(shù)量關(guān)系進(jìn)行了探討,發(fā)現(xiàn)PO﹣PH是個定值,則這個定值為_____.3、若函數(shù)圖像與x軸的兩個交點坐標(biāo)為和,則__________.4、已知二次函數(shù),當(dāng)x=_______時,y取得最小值.5、如圖,平行四邊形ABCD中,,點的坐標(biāo)是,以點為頂點的拋物線經(jīng)過軸上的點A,B,則此拋物線的解析式為__________________.6、如圖,點C在線段上,且,分別以、為邊在線段的同側(cè)作正方形、,連接、,則_________.7、如圖,在RT△ABC中,,,點在上,且,點是線段上一個動點,以為直徑作⊙,點為直徑上方半圓的中點,連接,則的最小值為___.四、解答題(6小題,每小題10分,共計60分)1、某種商品每件的進(jìn)價為10元,若每件按20元的價格銷售,則每月能賣出360件;若每件按30元的價格銷售,則每月能賣出60件.假定每月的銷售件數(shù)y是銷售價格x(單位:元)的一次函數(shù).(1)求y關(guān)于x的一次函數(shù)解析式;(2)當(dāng)銷售價格定為多少元時,每月獲得的利潤最大?并求此最大利潤.2、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個新圖象有且只有一個公共點時,d=;(2)當(dāng)直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當(dāng)直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當(dāng)直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.3、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.4、計算:5、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時,求k的值;(3)當(dāng)﹣4<x≤m時,y有最大值,求m的值.6、已知,且,求x,y的值.-參考答案-一、單選題1、B【解析】【分析】利用B、D關(guān)于y軸對稱,CH=1cm,BD=2cm可得到D點坐標(biāo)為(1,1),由AB=4cm,最低點C在x軸上,則AB關(guān)于直線CH對稱,可得到左邊拋物線的頂點C的坐標(biāo)為(-3,0),于是得到右邊拋物線的頂點C的坐標(biāo)為(3,0),然后設(shè)頂點式利用待定系數(shù)法求拋物線的解析式.【詳解】∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對稱,∴D點坐標(biāo)為(1,1),∵AB∥x軸,AB=4cm,最低點C在x軸上,∴AB關(guān)于直線CH對稱,∴左邊拋物線的頂點C的坐標(biāo)為(-3,0),∴右邊拋物線的頂點F的坐標(biāo)為(3,0),設(shè)右邊拋物線的解析式為y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右邊拋物線的解析式為y=(x-3)2,故選:B.【考點】本題考查了二次函數(shù)的應(yīng)用:利用實際問題中的數(shù)量關(guān)系與直角坐標(biāo)系中線段對應(yīng)起來,再確定某些點的坐標(biāo),然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問題.2、A【解析】【分析】根據(jù)特殊角的三角函數(shù)值解答.【詳解】∵為銳角,且,∴.故選A.【考點】此題考查的是特殊角的三角函數(shù)值,屬較簡單題目.3、C【解析】【分析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】反比例函數(shù)中,=-2020<0,圖象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故選:C.【考點】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<0時,圖象位于二四象限是解題關(guān)鍵.4、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).5、C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),直接根據(jù)的值得出開口方向,再利用頂點坐標(biāo)的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數(shù),可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當(dāng)時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數(shù)的性質(zhì),同學(xué)們應(yīng)根據(jù)題意熟練地應(yīng)用二次函數(shù)性質(zhì),這是中考中考查重點知識.6、A【解析】【分析】延長PO到E,延長線與圓O交于點E,連接EB,AC,根據(jù)四邊形ACEB為圓O的內(nèi)接四邊形,利用圓內(nèi)接四邊形的外角等于它的內(nèi)對角得到一對角相等,再由公共角相等,利用兩對對應(yīng)角相等的兩三角形相似,可得出三角形ACP與三角形EBP相似,由相似得比例,進(jìn)而可求得答案.【詳解】延長PO到E,延長線與圓O交于點E,連接EB,AC,∵四邊形ACEB為圓O的內(nèi)接四邊形,∴∠ACP=∠E,又∠P=∠P,∴△ACP∽△EBP,∴PA:PE=PC:PB,∴PA?PB=PC?PE,∵PA=AB=3,∴PB=6,又PC=2,∴3×6=2PE,∴PE=9,∴CE=9-2=7,∴半徑=3.5.【考點】此題考查了圓內(nèi)接四邊形的性質(zhì),相似三角形的判定與性質(zhì),利用了轉(zhuǎn)化思想,其中作出如圖所示的輔助線是解本題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應(yīng)成比例且夾角相等的兩個三角形相似;三邊對應(yīng)成比例的兩個三角形相似;兩角對應(yīng)相等的兩個三角形相似.2、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.3、ABC【解析】【分析】A.當(dāng)A′為CD中點時,設(shè)A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當(dāng)△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進(jìn)一步求得A'D=,即可判斷出B正確;C.過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長=16,即可得出D錯誤.【詳解】解:∵A′為CD中點,正方形ABCD的邊長為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設(shè)A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當(dāng)△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當(dāng)A'在CD上移動時,△A'CG周長不變,故D錯誤.故選:ABC【考點】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關(guān)圖形的性質(zhì)是解決本題的關(guān)鍵.4、ABD【解析】【分析】根據(jù)有兩組角對應(yīng)相等的兩個三角形相似可對A選項判斷;根據(jù)圓周角定理和有兩組角對應(yīng)相等的兩個三角形相似可對B選項判斷;根據(jù)兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似可對C、D選項判斷.【詳解】解:A、,,,故A選項的添加條件正確;B、,,而,,,故B選項的添加條件正確;C、∵AD·AB=CD·BD,∴AD∶BD=CD∶AB,又∵∠ADC≠∠B,∴無法證明與相似,故C選項的添加條件不正確;D、∵,,又,,故D選項的添加條件正確.故選:ABD.【考點】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似;有兩組角對應(yīng)相等的兩個三角形相似.也考查了圓周角定理.5、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標(biāo)為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側(cè),與軸的交點在軸的負(fù)半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標(biāo)為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標(biāo)為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質(zhì)與解析式的關(guān)系是解答本題的關(guān)鍵.6、ABD【解析】【分析】畫出圖象C3,以及以O(shè)為圓心,以1為半徑的圓,再作出⊙O內(nèi)接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內(nèi)接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結(jié)合是解題的關(guān)鍵.7、ABD【解析】【分析】先根據(jù)同角的余角相等得出∠G=∠EFH,再根據(jù)三角函數(shù)的定義求解即可.【詳解】解:∵在△EFG中,∠EFG=90°,F(xiàn)H⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以選項A、B、D都是正確的,故選:ABD.【考點】本題利用了同角的余角相等和銳角三角函數(shù)的定義解答,屬較簡單題目.三、填空題1、【解析】【分析】先將函數(shù)解析式化為頂點式,再根據(jù)函數(shù)的性質(zhì)解答.【詳解】解:,∵a=1>0,∴當(dāng)x=-2時,二次函數(shù)有最小值-4,故答案為:-4.【考點】此題考查將二次函數(shù)一般式化為頂點式,函數(shù)的性質(zhì),熟練轉(zhuǎn)化函數(shù)解析式的形式及掌握確定最值的方法是解題的關(guān)鍵.2、2【解析】【分析】設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,當(dāng)點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數(shù)圖象上點的坐標(biāo)特征,勾股定理,利用坐標(biāo)求線段長度是解題的關(guān)鍵.3、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標(biāo),即為它的圖象與x軸兩交點之間線段中點的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標(biāo)為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法是解決本題的關(guān)鍵.4、1【解析】【分析】根據(jù)拋物線的頂點坐標(biāo)和開口方向即可得出答案.【詳解】解:,該拋物線的頂點坐標(biāo)為,且開口方向向上,當(dāng)時,取得最小值,故答案為:1.【考點】本題考查二次函數(shù)的最值,求二次函數(shù)最大值或最小值有三種方法:第一種可有圖象直接得出,第二種是配方法,第三種是公式法.5、【解析】【分析】根據(jù)平行四邊形的性質(zhì)得到CD=AB=4,即C點坐標(biāo)為,進(jìn)而得到A點坐標(biāo)為,B點坐標(biāo)為,利用待定系數(shù)法即可求得函數(shù)解析式.【詳解】∵四邊形ABCD為平行四邊形∴CD=AB=4∴C點坐標(biāo)為∴A點坐標(biāo)為,B點坐標(biāo)為設(shè)函數(shù)解析式為,代入C點坐標(biāo)有解得∴函數(shù)解析式為,即故答案為.【考點】本題考查了平行四邊形的性質(zhì),和待定系數(shù)法求二次函數(shù)解析式,問題的關(guān)鍵是求出A點或B點的坐標(biāo).6、【解析】【分析】設(shè)BC=a,則AC=2a,然后利用正方形的性質(zhì)求得CE、CG的長、∠GCD=ECD=45°,進(jìn)而說明△ECG為直角三角形,最后運用正切的定義即可解答.【詳解】解:設(shè)BC=a,則AC=2a∵正方形∴EC=,∠ECD=同理:CG=,∠GCD=

∴.故答案為.【考點】本題考查了正方形的性質(zhì)和正切的定義,根據(jù)正方形的性質(zhì)說明△ECG是直角三角形是解答本題的關(guān)鍵.7、【解析】【分析】如圖,連接OQ,CQ,過點A作AT⊥CQ交CQ的延長線于T.證明∠ACT=45°,求出AT即可解決問題.【詳解】解:如圖,連接OQ,CQ,過點A作AT⊥CQ交CQ的延長線于T.∵,∴OQ⊥PD,∴∠QOD=90°,∴∠QCD=∠QOD=45°,∵∠ACB=90°,∴∠ACT=45°,∵AT⊥CT,∴∠ATC=90°,∵AC=8,∴AT=AC?sin45°=4,∵AQ≥AT,∴AQ≥4,∴AQ的最小值為4,故答案為:4.【考點】本題考查圓周角定理,垂線段最短,解直角三角形等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.四、解答題1、(1)(2)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元【解析】【分析】(1)設(shè),把,和,代入求出k、b的值,從而得出答案;(2)根據(jù)總利潤=每件利潤×每月銷售量列出函數(shù)解析式,配方成頂點式,利用二次函數(shù)的性質(zhì)求解可得答案.(1)解:設(shè),把,和,代入可得,解得,則;(2)解:每月獲得利潤.∵,∴當(dāng)時,P有最大值,最大值為3630.答:當(dāng)價格為21元時,才能使每月獲得最大利潤,最大利潤為3630元.【考點】本題主要考查了一次函數(shù)解析式的求法和二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意找到其中蘊含的相等關(guān)系,并據(jù)此得出函數(shù)解析式及二次函數(shù)的性質(zhì),然后再利用二次函數(shù)求最值.2、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標(biāo),然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標(biāo)進(jìn)行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當(dāng)直線l經(jīng)過點A(-3,0)時,d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標(biāo)恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數(shù)根,解△=9+8(2d+6)=0得d=,∴點P的坐標(biāo)為().①當(dāng)直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當(dāng)直線l經(jīng)過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點A(-3,0)開始向下平移到直線l經(jīng)過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經(jīng)過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當(dāng)直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;當(dāng)直線l繼續(xù)向下平移的過程中經(jīng)過點P(),直線l與這個新圖象有且只有三個公共點,可得d=;∴要使直線l與這個新圖象有四個公共點則d的取值范圍是<d<.【考點】本題考查的是二次函數(shù)綜合運用,關(guān)鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關(guān)系.3、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論