唐山職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論Ⅰ》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
唐山職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論Ⅰ》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
唐山職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論Ⅰ》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
唐山職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論Ⅰ》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
唐山職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論Ⅰ》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共2頁(yè)唐山職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論Ⅰ》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種創(chuàng)新的模型架構(gòu)。以下關(guān)于GAN的說(shuō)法,不正確的是()A.GAN由生成器和判別器組成,通過(guò)兩者之間的對(duì)抗訓(xùn)練來(lái)生成逼真的數(shù)據(jù)B.GAN在圖像生成、文本生成和數(shù)據(jù)增強(qiáng)等領(lǐng)域取得了顯著的成果C.GAN的訓(xùn)練過(guò)程穩(wěn)定,容易收斂到最優(yōu)解D.GAN的應(yīng)用存在一些潛在的問(wèn)題,如模式崩潰和訓(xùn)練不穩(wěn)定等2、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用面臨著諸多技術(shù)和法律挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車(chē)在行駛過(guò)程中需要做出決策,如避讓行人或其他車(chē)輛。以下哪種方法在確保決策的安全性和合法性方面最為關(guān)鍵?()A.基于概率的決策模型B.遵循預(yù)設(shè)的規(guī)則和策略C.模仿人類(lèi)駕駛員的決策方式D.實(shí)時(shí)收集大量的交通數(shù)據(jù)進(jìn)行分析3、人工智能中的機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)等。假設(shè)要對(duì)一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類(lèi),以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過(guò)擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類(lèi)B.無(wú)監(jiān)督學(xué)習(xí)中的K-Means聚類(lèi)算法,自動(dòng)將數(shù)據(jù)分為不同的簇C.強(qiáng)化學(xué)習(xí)中的Q-Learning算法,通過(guò)與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對(duì)未標(biāo)記數(shù)據(jù)進(jìn)行分類(lèi)4、在人工智能的圖像識(shí)別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計(jì)一個(gè)用于識(shí)別手寫(xiě)數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個(gè)因素對(duì)于提高識(shí)別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量5、在人工智能的醫(yī)療應(yīng)用中,疾病診斷是一個(gè)重要的方向。假設(shè)我們要利用人工智能技術(shù)輔助醫(yī)生診斷心臟病,需要對(duì)大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。那么,以下關(guān)于人工智能在醫(yī)療診斷中的作用,哪一項(xiàng)是不準(zhǔn)確的?()A.能夠發(fā)現(xiàn)醫(yī)生難以察覺(jué)的細(xì)微模式和關(guān)聯(lián)B.可以完全取代醫(yī)生的診斷,獨(dú)立做出準(zhǔn)確的判斷C.有助于提高診斷的效率和準(zhǔn)確性D.需要結(jié)合醫(yī)生的臨床經(jīng)驗(yàn)和專(zhuān)業(yè)知識(shí)進(jìn)行綜合判斷6、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)系統(tǒng)來(lái)監(jiān)測(cè)農(nóng)田中的病蟲(chóng)害情況,需要能夠準(zhǔn)確識(shí)別病蟲(chóng)害的類(lèi)型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹(shù)算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法7、在人工智能的決策樹(shù)算法中,當(dāng)進(jìn)行特征選擇來(lái)構(gòu)建決策樹(shù)時(shí),以下哪種特征選擇標(biāo)準(zhǔn)通常能夠產(chǎn)生更優(yōu)的決策樹(shù)?()A.信息增益B.基尼系數(shù)C.隨機(jī)選擇特征D.選擇特征數(shù)量最多的特征8、人工智能中的預(yù)訓(xùn)練語(yǔ)言模型,如GPT-3,在自然語(yǔ)言處理任務(wù)中取得了顯著成果。假設(shè)要將預(yù)訓(xùn)練語(yǔ)言模型應(yīng)用于特定領(lǐng)域的文本分類(lèi)任務(wù),以下關(guān)于預(yù)訓(xùn)練模型應(yīng)用的描述,正確的是:()A.可以直接使用預(yù)訓(xùn)練模型進(jìn)行分類(lèi),無(wú)需任何微調(diào)就能獲得良好的效果B.預(yù)訓(xùn)練模型的參數(shù)是固定的,不能根據(jù)新的任務(wù)和數(shù)據(jù)進(jìn)行調(diào)整C.在預(yù)訓(xùn)練模型的基礎(chǔ)上,使用特定領(lǐng)域的數(shù)據(jù)進(jìn)行微調(diào),可以提高在該領(lǐng)域任務(wù)中的性能D.預(yù)訓(xùn)練語(yǔ)言模型對(duì)計(jì)算資源要求不高,任何設(shè)備都能輕松應(yīng)用9、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個(gè)用于圖像分類(lèi)的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對(duì)數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法10、在人工智能的研究領(lǐng)域中,自然語(yǔ)言處理是重要的一部分。假設(shè)我們要開(kāi)發(fā)一個(gè)能夠自動(dòng)回答用戶問(wèn)題的智能客服系統(tǒng),需要對(duì)大量的文本數(shù)據(jù)進(jìn)行學(xué)習(xí)和分析。以下哪種技術(shù)在處理自然語(yǔ)言的語(yǔ)義理解方面可能發(fā)揮關(guān)鍵作用?()A.詞法分析B.句法分析C.語(yǔ)義網(wǎng)絡(luò)D.語(yǔ)音識(shí)別11、人工智能中的遷移學(xué)習(xí)技術(shù)可以利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類(lèi)任務(wù)。以下哪種遷移學(xué)習(xí)策略最有可能取得較好的效果?()A.直接使用原模型進(jìn)行預(yù)測(cè)B.微調(diào)原模型的部分層C.重新訓(xùn)練一個(gè)新的模型D.對(duì)原模型進(jìn)行壓縮12、在人工智能的發(fā)展中,倫理和社會(huì)問(wèn)題日益受到關(guān)注。假設(shè)一個(gè)城市正在考慮廣泛部署人工智能監(jiān)控系統(tǒng),以下關(guān)于人工智能倫理的描述,正確的是:()A.只要人工智能系統(tǒng)能夠提高安全性,就無(wú)需考慮其可能對(duì)個(gè)人隱私造成的侵犯B.在部署人工智能系統(tǒng)時(shí),不需要考慮公平性和透明度,只要結(jié)果有效就行C.應(yīng)該在開(kāi)發(fā)和使用人工智能技術(shù)時(shí),遵循倫理原則,制定相關(guān)法規(guī)和政策,以確保其有益和無(wú)害的應(yīng)用D.人工智能的倫理問(wèn)題是次要的,技術(shù)發(fā)展才是關(guān)鍵,倫理可以在后期考慮13、人工智能中的聚類(lèi)算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶數(shù)據(jù)進(jìn)行聚類(lèi)分析。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類(lèi)算法,需要事先指定簇的數(shù)量B.聚類(lèi)算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類(lèi)算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類(lèi)結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響14、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺(jué)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)、圖像分類(lèi)和語(yǔ)義分割是計(jì)算機(jī)視覺(jué)中的常見(jiàn)任務(wù)B.計(jì)算機(jī)視覺(jué)技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域C.計(jì)算機(jī)視覺(jué)系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺(jué)技術(shù)的發(fā)展15、深度學(xué)習(xí)模型在圖像識(shí)別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)來(lái)識(shí)別不同種類(lèi)的動(dòng)物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識(shí)別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對(duì)模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測(cè)試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過(guò)擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述人工智能中的倫理問(wèn)題和挑戰(zhàn)。2、(本題5分)說(shuō)明聚類(lèi)算法的分類(lèi)和常見(jiàn)算法。3、(本題5分)簡(jiǎn)述自監(jiān)督學(xué)習(xí)的原理和方法。4、(本題5分)解釋人工智能在教育領(lǐng)域的潛在影響。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)借助Python的遺傳算法庫(kù),解決一個(gè)復(fù)雜的背包問(wèn)題,即在有限的背包容量?jī)?nèi)選擇最優(yōu)的物品組合,使得總價(jià)值最大。定義物品的價(jià)值、重量和背包容量,通過(guò)遺傳算法的迭代優(yōu)化找到最優(yōu)解,并分析算法的收斂速度和結(jié)果的最優(yōu)性。2、(本題5分)借助遺傳算法優(yōu)化一個(gè)物流配送問(wèn)題,考慮交通擁堵、路況等因素,提高配送的效率和可靠性。3、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)自編碼變分Bayes網(wǎng)絡(luò),用于數(shù)據(jù)的生成和壓縮,分析模型的復(fù)雜度和性能。4、(本題5分)利用Python的TensorFlow庫(kù),構(gòu)建一個(gè)深度卷積生成對(duì)抗網(wǎng)絡(luò)(DCGAN)用于生成高分辨率圖像,評(píng)估生成圖像的質(zhì)量和逼真度。5、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于圖神經(jīng)網(wǎng)絡(luò)(GNN)的社交網(wǎng)絡(luò)推薦模型,根據(jù)用戶的社交關(guān)系和興趣偏好為其推薦好友或內(nèi)容。研究不同的圖結(jié)構(gòu)和節(jié)點(diǎn)特征對(duì)推薦效果的影響,評(píng)估模型的準(zhǔn)確性和個(gè)性化程度。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論