2023山東省鄒城市中考數(shù)學(xué)高分題庫(kù)附參考答案詳解(基礎(chǔ)題)_第1頁(yè)
2023山東省鄒城市中考數(shù)學(xué)高分題庫(kù)附參考答案詳解(基礎(chǔ)題)_第2頁(yè)
2023山東省鄒城市中考數(shù)學(xué)高分題庫(kù)附參考答案詳解(基礎(chǔ)題)_第3頁(yè)
2023山東省鄒城市中考數(shù)學(xué)高分題庫(kù)附參考答案詳解(基礎(chǔ)題)_第4頁(yè)
2023山東省鄒城市中考數(shù)學(xué)高分題庫(kù)附參考答案詳解(基礎(chǔ)題)_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省鄒城市中考數(shù)學(xué)高分題庫(kù)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,一個(gè)油桶靠在直立的墻邊,量得并且則這個(gè)油桶的底面半徑是()A. B. C. D.2、如圖1,矩形中,點(diǎn)為的中點(diǎn),點(diǎn)沿從點(diǎn)運(yùn)動(dòng)到點(diǎn),設(shè),兩點(diǎn)間的距離為,,圖2是點(diǎn)運(yùn)動(dòng)時(shí)隨變化的關(guān)系圖象,則的長(zhǎng)為(

)A. B. C. D.3、一元二次方程配方后可化為(

)A. B.C. D.4、下列語(yǔ)句判斷正確的是()A.等邊三角形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形B.等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形C.等邊三角形是中心對(duì)稱圖形,但不是軸對(duì)稱圖形D.等邊三角形既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形5、一個(gè)不透明的盒子里裝有a個(gè)除顏色外完全相同的球,其中有6個(gè)白球,每次將球充分?jǐn)噭蚝?,任意摸?個(gè)球記下顏色然后再放回盒子里,通過(guò)如此大量重復(fù)試驗(yàn),發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.18二、多選題(5小題,每小題3分,共計(jì)15分)1、下列說(shuō)法不正確的是(

)A.經(jīng)過(guò)三個(gè)點(diǎn)有且只有一個(gè)圓B.經(jīng)過(guò)兩點(diǎn)的圓的圓心是這兩點(diǎn)連線的中點(diǎn)C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心2、如圖,為的直徑延長(zhǎng)線上的一點(diǎn),與相切,切點(diǎn)為,是上一點(diǎn),連接.已知,則下列結(jié)論正確的為(

)A.與相切 B.四邊形是菱形C. D.3、已知,為半徑是3的圓周上兩點(diǎn),為的中點(diǎn),以線段,為鄰邊作菱形,頂點(diǎn)恰在該圓直徑的三等分點(diǎn)上,則該菱形的邊長(zhǎng)為(

)A. B. C. D.4、如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到B.點(diǎn)O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+5、下列說(shuō)法正確的是(

)A.“射擊運(yùn)動(dòng)員射擊一次,命中靶心”是隨機(jī)事件B.某彩票的中獎(jiǎng)機(jī)會(huì)是1%,買100張一定會(huì)中獎(jiǎng)C.拋擲一枚質(zhì)地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學(xué)生,為了解學(xué)生最喜歡的課外體育運(yùn)動(dòng)項(xiàng)目,隨機(jī)抽取了200名學(xué)生,其中有85名學(xué)生表示最喜歡的項(xiàng)目是跳繩,估計(jì)該校最喜歡的課外體育運(yùn)動(dòng)項(xiàng)目為跳繩的有1360人第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長(zhǎng)度為,則∠BAC=________度.2、如圖,把△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點(diǎn)D,若∠A′DC=90°,則∠A度數(shù)為___________.3、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長(zhǎng)為__.4、將二次函數(shù)化成一般形式,其中二次項(xiàng)系數(shù)為________,一次項(xiàng)系數(shù)為________,常數(shù)項(xiàng)為________.5、斛是中國(guó)古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說(shuō):“斛的底面為:正方形外接一個(gè)圓,此圓外是一個(gè)同心圓”.如圖所示,問(wèn)題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長(zhǎng)為________尺.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點(diǎn)A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時(shí),求k的值;(3)當(dāng)﹣4<x≤m時(shí),y有最大值,求m的值.2、如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過(guò)點(diǎn)D,交BC于點(diǎn)E(1)求證:AC是⊙O的切線;(2)若OB=2,CD=,求圖中陰影部分的面積(結(jié)果保留).五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對(duì)角線BD(不含B,D點(diǎn))上任意一點(diǎn),將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請(qǐng)判斷線段AM和線段EN的數(shù)量關(guān)系,并說(shuō)明理由.2、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.3、如圖,已知在中,,D、E是BC邊上的點(diǎn),將繞點(diǎn)A旋轉(zhuǎn),得到,連接.(1)當(dāng)時(shí),時(shí),求證:;(2)當(dāng)時(shí),與有怎樣的數(shù)量關(guān)系?請(qǐng)寫出,并說(shuō)明理由.(3)在(2)的結(jié)論下,當(dāng),BD與DE滿足怎樣的數(shù)量關(guān)系時(shí),是等腰直角三角形?(直接寫出結(jié)論,不必證明)4、如圖,在中,,以AC為直徑的半圓交斜邊AB于點(diǎn)D,E為BC的中點(diǎn),連結(jié)DE,CD.過(guò)點(diǎn)D作于點(diǎn)F.(1)求證:DE是的切線;(2)若,,求的半徑.-參考答案-一、單選題1、C【解析】【分析】根據(jù)切線的性質(zhì),連接過(guò)切點(diǎn)的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點(diǎn)A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點(diǎn)】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).2、C【解析】【分析】先利用圖2得出當(dāng)P點(diǎn)位于B點(diǎn)時(shí)和當(dāng)P點(diǎn)位于E點(diǎn)時(shí)的情況,得到AB和BE之間的關(guān)系以及,再利用勾股定理求解即可得到BE的值,最后利用中點(diǎn)定義得到BC的值.【詳解】解:由圖2可知,當(dāng)P點(diǎn)位于B點(diǎn)時(shí),,即,當(dāng)P點(diǎn)位于E點(diǎn)時(shí),,即,則,∵,∴,即,∵∴,∵點(diǎn)為的中點(diǎn),∴,故選:C.【考點(diǎn)】本題考查了學(xué)生對(duì)函數(shù)圖象的理解與應(yīng)用,涉及到了勾股定理、解一元二次方程、中點(diǎn)的定義等內(nèi)容,解決本題的關(guān)鍵是能正確理解題意,能從圖象中提取相關(guān)信息,能利用勾股定理建立方程等,本題蘊(yùn)含了數(shù)形結(jié)合的思想方法.3、B【解析】【分析】根據(jù)題意直接對(duì)一元二次方程配方,然后把常數(shù)項(xiàng)移到等號(hào)右邊即可.【詳解】解:根據(jù)題意,把一元二次方程配方得:,即,∴化成的形式為.故選:B.【考點(diǎn)】本題考查配方法解一元二次方程,注意掌握配方法的一般步驟:把常數(shù)項(xiàng)移到等號(hào)的右邊;把二次項(xiàng)的系數(shù)化為1;等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù).4、A【分析】根據(jù)等邊三角形的對(duì)稱性判斷即可.【詳解】∵等邊三角形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,∴B,C,D都不符合題意;故選:A.【點(diǎn)睛】本題考查了等邊三角形的對(duì)稱性,熟練掌握等邊三角形的對(duì)稱性是解題的關(guān)鍵.5、C【分析】在同樣條件下,大量反復(fù)試驗(yàn)時(shí),隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗(yàn),a=15是原方程的解故選:C.【點(diǎn)睛】本題利用了用大量試驗(yàn)得到的頻率可以估計(jì)事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.二、多選題1、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質(zhì)求解即可;D.根據(jù)三角形外心的性質(zhì)求解即可;【詳解】解:A、如果三個(gè)點(diǎn)在一條直線上,不存在經(jīng)過(guò)這三個(gè)點(diǎn)的圓,故選項(xiàng)錯(cuò)誤,符合題意;B、經(jīng)過(guò)兩點(diǎn)的圓的所有圓心在兩點(diǎn)連線的垂直平分線上,不僅僅是這兩點(diǎn)連線的中點(diǎn),故選項(xiàng)錯(cuò)誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點(diǎn),在三角形外部,選項(xiàng)正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點(diǎn),不是其中心,故選項(xiàng)錯(cuò)誤,符合題意;故選:ABD.【考點(diǎn)】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識(shí),解題的關(guān)鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.2、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項(xiàng)所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點(diǎn)為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項(xiàng)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點(diǎn)】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識(shí),熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.3、BD【解析】【分析】過(guò)B作直徑,連接AC交AO與E,再根據(jù)兩種情況求出BD的兩個(gè)長(zhǎng)度,再求得OD,OE,DE的值連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】∵點(diǎn)B為的中點(diǎn)∴BD⊥AC①如圖∵點(diǎn)D恰再該圓直徑的三等分點(diǎn)上∴BD==2∴OD=OB-BD=1∵四邊形ABCD是菱形∴DE==1∴OE=2連接OC∵CE==∴邊CD=②如下圖BD==4同理可得,OD=1,OE=1,DE=2,連接OC,∵CE==∴CD=故選:BD【考點(diǎn)】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確地作出圖形是解題的關(guān)鍵.4、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點(diǎn)O與O′的距離為4,故符合題意;故符合題意;如圖,過(guò)作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)與重合,對(duì)應(yīng),同理可得:是邊長(zhǎng)為的等邊三角形,是邊長(zhǎng)為的直角三角形,同理可得:故符合題意;故選:【考點(diǎn)】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應(yīng)用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.5、ACD【解析】【分析】根據(jù)隨機(jī)事件的定義(隨機(jī)事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎(jiǎng)的概率是等可能的,則買100張可能會(huì)中獎(jiǎng),可能不會(huì)中獎(jiǎng)可判斷B;利用列舉法將所有可能列舉出來(lái),求滿足條件的概率即可判斷C;根據(jù)計(jì)算公式列出算式,即可判斷D.【詳解】解:A、“射擊運(yùn)動(dòng)員射擊一次,命中靶心”是隨機(jī)事件,選項(xiàng)正確;B、由于中獎(jiǎng)的概率是等可能的,則買100張可能會(huì)中獎(jiǎng),可能不會(huì)中獎(jiǎng),選項(xiàng)說(shuō)法錯(cuò)誤,不符合題意;C、拋擲一枚質(zhì)地均勻的硬幣兩次,所有可能出現(xiàn)的結(jié)果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項(xiàng)正確;D、根據(jù)計(jì)算公式該項(xiàng)人數(shù)等于該項(xiàng)所占百分比乘以總?cè)藬?shù),,選項(xiàng)正確,符合題意.故選:ACD.【考點(diǎn)】本題主要考查隨機(jī)事件的定義,概率發(fā)生的可能性、求隨機(jī)事件的概率與求某項(xiàng)的人數(shù),根據(jù)等可能事件的概率公式求解是解題關(guān)鍵.三、填空題1、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問(wèn)題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點(diǎn)睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.2、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得知,從而求得的度數(shù),又因?yàn)榈膶?duì)應(yīng)角是,即可求出的度數(shù).【詳解】繞著點(diǎn)時(shí)針旋轉(zhuǎn),得到,的對(duì)應(yīng)角是故答案為:.【考點(diǎn)】此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是正確確定對(duì)應(yīng)角.3、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長(zhǎng)公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長(zhǎng)公式.4、

【解析】【分析】通過(guò)去括號(hào),移項(xiàng),可以把方程化成二次函數(shù)的一般形式,然后確定二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng).【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項(xiàng)系數(shù)為﹣2;一次項(xiàng)系數(shù)為8;常數(shù)項(xiàng)為﹣8.故答案為﹣2,8,﹣8.【考點(diǎn)】本題考查的是二次函數(shù)的一般形式,通過(guò)去括號(hào),移項(xiàng),合并同類項(xiàng),得到二次函數(shù)的一般形式,確定二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)的值.5、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長(zhǎng)為尺.故答案為:【點(diǎn)睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握?qǐng)A內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.四、簡(jiǎn)答題1、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個(gè)函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對(duì)稱軸方程,分三種情況討論,當(dāng)<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對(duì)稱軸為直線x=2,當(dāng)m<2時(shí),當(dāng)x=m時(shí),y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當(dāng)m≥2時(shí),當(dāng)x=2時(shí),y有最大值,∴=3,∴m=,綜上所述,m的值為-或.【考點(diǎn)】本題考查的是利用待定系數(shù)法求解拋物線的解析式,拋物線與軸的交點(diǎn)坐標(biāo),一元二次方程根與系數(shù)的關(guān)系,二次函數(shù)的增減性,掌握數(shù)形結(jié)合的方法與分類討論是解題的關(guān)鍵.2、(1)見(jiàn)解析;(2)【解析】【分析】(1)欲證明AC是⊙O的切線,只要證明OD⊥AC即可.(2)證明△OBE是等邊三角形即可解決問(wèn)題.【詳解】(1)證明:連接OD,如圖,∵BD為∠ABC平分線,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,∴OD⊥AC,∴AC是⊙O的切線.(2)過(guò)O作OG⊥BC,連接OE,則四邊形ODCG為矩形,∴GC=OD=OB=2,OG=CD=,在Rt△OBG中,利用勾股定理得:BG=1,∴BE=2,則△OBE是等邊三角形,∴陰影部分面積為﹣×2×=.【考點(diǎn)】本題考查切線的判定和性質(zhì),等邊三角形的判定和性質(zhì),思想的面積公式等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.五、解答題1、AM=EN,理由見(jiàn)解析【分析】根據(jù)旋轉(zhuǎn)性質(zhì)和等邊三角形的性質(zhì)可證得∠ABM=∠EBN,BM=BN,AB=BE,根據(jù)全等三角形的判定證明△ABM≌△EBN即可得出結(jié)論.【詳解】解:AM=EN,理由為:∵△ABE是等邊三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN,在△ABM和△EBN中,,∴△ABM≌△EBN(SAS),∴AM=EN.【點(diǎn)睛】本題考查等邊三角形的性質(zhì)、旋轉(zhuǎn)性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握用全等三角形證明線段相等是解答的關(guān)鍵.2、(1),(2)x1=,x2=2(3)x1=,x2=(4)x1=-4,x2=-5【解析】【分析】(1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解.(1)解:a=1,b=-1,c=-1∴b2-4ac=(-1)2-4×1×(-1)=5∴x==即原方程的根為x1=,x2=(2)解:移項(xiàng),得3x(x-2)-(x-2)=0,即(3x-1)(x-2)=0,∴x1=,x2=2.(3)解:配方,得(x-)2=1,∴x-=±1.∴x1=+1,x2=-1.(4)解:原方程可化為x2+9x+20=0,即(x+4)(x+5)=0,∴x1=-4,x2=-5.【考點(diǎn)】本題主要考查了解一元二次方程,熟練掌握一元二次方程的解法是解題的關(guān)鍵.3、(1)見(jiàn)解析;(2)∠DAE=∠BAC,見(jiàn)解析;(3)DE=BD,見(jiàn)解析【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據(jù)全等三角形對(duì)應(yīng)邊相等證明即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據(jù)全等三角形對(duì)應(yīng)角相等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論