2024-2025學(xué)年度滬科版9年級(jí)下冊(cè)期末試題及參考答案詳解(奪分金卷)_第1頁
2024-2025學(xué)年度滬科版9年級(jí)下冊(cè)期末試題及參考答案詳解(奪分金卷)_第2頁
2024-2025學(xué)年度滬科版9年級(jí)下冊(cè)期末試題及參考答案詳解(奪分金卷)_第3頁
2024-2025學(xué)年度滬科版9年級(jí)下冊(cè)期末試題及參考答案詳解(奪分金卷)_第4頁
2024-2025學(xué)年度滬科版9年級(jí)下冊(cè)期末試題及參考答案詳解(奪分金卷)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滬科版9年級(jí)下冊(cè)期末試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長(zhǎng)為()A.3 B. C. D.2、圖2是由圖1經(jīng)過某一種圖形的運(yùn)動(dòng)得到的,這種圖形的運(yùn)動(dòng)是()A.平移 B.翻折 C.旋轉(zhuǎn) D.以上三種都不對(duì)3、若的圓心角所對(duì)的弧長(zhǎng)是,則此弧所在圓的半徑為()A.1 B.2 C.3 D.44、已知菱形ABCD的對(duì)角線交于原點(diǎn)O,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,則點(diǎn)D的坐標(biāo)是()A. B. C. D.5、下列汽車標(biāo)志中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.6、如圖,在中,,,將繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°7、如圖是由5個(gè)相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.8、下面是由一些完全相同的小立方塊搭成的幾何體從三個(gè)方向看到的形狀圖.搭成這個(gè)幾何體所用的小立方塊的個(gè)數(shù)是()A.個(gè) B.個(gè) C.個(gè) D.個(gè)第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、點(diǎn)P為邊長(zhǎng)為2的正方形ABCD內(nèi)一點(diǎn),是等邊三角形,點(diǎn)M為BC中點(diǎn),N是線段BP上一動(dòng)點(diǎn),將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,連接AQ、PQ,則的最小值為______.2、如圖AB為⊙O的直徑,點(diǎn)P為AB延長(zhǎng)線上的點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號(hào))①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長(zhǎng)為;④若AC=3BD,則有tan∠MAP=.3、如圖,在中,,是內(nèi)的一個(gè)動(dòng)點(diǎn),滿足.若,,則長(zhǎng)的最小值為_______.4、邊長(zhǎng)相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,,點(diǎn)B在原點(diǎn),把六邊形ABCDEF沿x軸正半軸繞頂點(diǎn)按順時(shí)針方向,從點(diǎn)B開始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過2021次旋轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是_____________.5、在平面直角坐標(biāo)系中,點(diǎn),圓C與x軸相切于點(diǎn)A,過A作一條直線與圓交于A,B兩點(diǎn),AB中點(diǎn)為M,則OM的最大值為______.6、一個(gè)直角三角形的斜邊長(zhǎng)cm,兩條直角邊長(zhǎng)的和是6cm,則這個(gè)直角三角形外接圓的半徑為______cm,直角三角形的面積是________.7、兩直角邊分別為6、8,那么的內(nèi)接圓的半徑為____________.三、解答題(7小題,每小題0分,共計(jì)0分)1、小宇和小偉玩“石頭、剪刀、布”的游戲.這個(gè)游戲的規(guī)則是:“剪刀”勝“布”,“布”勝“石頭”,“石頭”勝“剪刀”,手勢(shì)相同不分勝負(fù).如果二人同時(shí)隨機(jī)出手(分別出三種手勢(shì)中的一種手勢(shì))一次,那么小宇獲勝的概率是多少?2、如圖1,點(diǎn)O為直線AB上一點(diǎn),將兩個(gè)含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時(shí)三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)時(shí),若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點(diǎn)O以每秒2°的速度按順時(shí)針方向旋轉(zhuǎn),同時(shí)將三角板OPQ繞點(diǎn)O以每秒3°的速度按逆時(shí)針方向旋轉(zhuǎn),將射線OB繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當(dāng)射線OC、OD重合時(shí),射線OE改為繞點(diǎn)O以原速按順時(shí)針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當(dāng)時(shí),直接寫出旋轉(zhuǎn)時(shí)間t的值.3、如圖,在△ABC是⊙O的內(nèi)接三角形,∠B=45°,連接OC,過點(diǎn)A作AD∥OC,交BC的延長(zhǎng)線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長(zhǎng).4、在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為、、(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).(1)將向下平移4個(gè)單位長(zhǎng)度得到的,則點(diǎn)的坐標(biāo)是____________;(2)以點(diǎn)B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點(diǎn)的坐標(biāo);(3)若是外接圓,求的半徑.5、為了引導(dǎo)青少年學(xué)黨史,某中學(xué)舉行了“獻(xiàn)禮建黨百年”黨史知識(shí)競(jìng)賽活動(dòng),將成績(jī)劃分為四個(gè)等級(jí):A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機(jī)調(diào)查了部分同學(xué)的競(jìng)賽成績(jī),繪制成了如下統(tǒng)計(jì)圖(部分信息未給出):(1)小李共抽取了名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,扇形統(tǒng)計(jì)圖中“優(yōu)秀”等級(jí)對(duì)應(yīng)的扇形圓心角度數(shù)為,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(2)該校共有2000名學(xué)生,請(qǐng)你估計(jì)該校競(jìng)賽成績(jī)“優(yōu)秀”的學(xué)生人數(shù);(3)已知調(diào)查對(duì)象中只有兩位女生競(jìng)賽成績(jī)不合格,小李準(zhǔn)備隨機(jī)回訪兩位競(jìng)賽成績(jī)不合格的同學(xué),請(qǐng)用樹狀圖或列表法求出恰好回訪到一男一女的概率.6、如圖所示,是⊙的一條弦,,垂足為,交⊙于點(diǎn),點(diǎn)在⊙上.()若,求的度數(shù).()若,,求的長(zhǎng).7、如圖,是由若干個(gè)完全相同的小正方體組成的一個(gè)幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.-參考答案-一、單選題1、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長(zhǎng)交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點(diǎn)睛】本題考查了圓周角性質(zhì),利用同弧所對(duì)圓周角性質(zhì)與直徑所對(duì)圓周角性質(zhì),30°角所對(duì)直角三角形性質(zhì),掌握?qǐng)A周角性質(zhì),利用同弧所對(duì)圓周角性質(zhì)與直徑所對(duì)圓周角性質(zhì),30°角所對(duì)直角三角形性質(zhì)是解題的關(guān)鍵.2、C【詳解】解:根據(jù)圖形可知,這種圖形的運(yùn)動(dòng)是旋轉(zhuǎn)而得到的,故選:C.【點(diǎn)睛】本題考查了圖形的旋轉(zhuǎn),熟記圖形的旋轉(zhuǎn)的定義(把一個(gè)平面圖形繞平面內(nèi)某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度,叫做圖形的旋轉(zhuǎn))是解題關(guān)鍵.3、C【分析】先設(shè)半徑為r,再根據(jù)弧長(zhǎng)公式建立方程,解出r即可【詳解】設(shè)半徑為r,則周長(zhǎng)為2πr,120°所對(duì)應(yīng)的弧長(zhǎng)為解得r=3故選C【點(diǎn)睛】本題考查弧長(zhǎng)計(jì)算,牢記弧長(zhǎng)公式是本題關(guān)鍵.4、A【分析】根據(jù)菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,則點(diǎn)與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,根據(jù)中心對(duì)稱的點(diǎn)的坐標(biāo)特征進(jìn)行求解即可【詳解】解:∵菱形是中心對(duì)稱圖形,菱形ABCD的對(duì)角線交于原點(diǎn)O,∴與點(diǎn)關(guān)于原點(diǎn)中心對(duì)稱,點(diǎn)B的坐標(biāo)為,點(diǎn)D的坐標(biāo)是故選A【點(diǎn)睛】本題考查了菱形的性質(zhì),求關(guān)于原點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo),掌握菱形的性質(zhì)是解題的關(guān)鍵.5、C【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;C、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)符合題意;D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.6、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.7、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個(gè)正方形,第二層左側(cè)有1個(gè)正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識(shí),熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.8、D【分析】從俯視圖中可以看出最底層小正方體的個(gè)數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個(gè)數(shù),從而算出總的個(gè)數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個(gè)正方體,第二層有1個(gè)正方體,所以搭成這個(gè)幾何體所用的小立方塊的個(gè)數(shù)是6,故選D.【點(diǎn)睛】考查學(xué)生對(duì)三視圖掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對(duì)空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.二、填空題1、【分析】如圖,取的中點(diǎn),連接,,,證明,進(jìn)而證明在上運(yùn)動(dòng),且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質(zhì)和勾股定理求得的長(zhǎng)即可求得的最小值.【詳解】解:如圖,取的中點(diǎn),連接,,,將線段MN繞點(diǎn)M順時(shí)針旋轉(zhuǎn)60°得到線段MQ,,是等邊三角形,,是的中點(diǎn),是的中點(diǎn)是等邊三角形,即在和中,又是的中點(diǎn)點(diǎn)在上是的中點(diǎn),是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點(diǎn)睛】本題考查了正方形的性質(zhì)等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,垂直平分線的性質(zhì)與判定,根據(jù)以上知識(shí)轉(zhuǎn)化線段是解題的關(guān)鍵.2、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對(duì)等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對(duì)應(yīng)邊成比例可判斷②;求出,利用弧長(zhǎng)公式求得的長(zhǎng)可判斷③;由,,,可得,繼而可得,,進(jìn)而有,在中,利用勾股定理求出PD的長(zhǎng),可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長(zhǎng)為,故③錯(cuò)誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.3、2【分析】取AC中點(diǎn)O,由勾股定理的逆定理可知∠ADC=90°,則點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點(diǎn)O,∵,即,∴∠ADC=90°,∴點(diǎn)D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長(zhǎng)的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點(diǎn)睛】本題主要考查了一點(diǎn)到圓上一點(diǎn)的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點(diǎn)D的運(yùn)動(dòng)軌跡.4、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標(biāo).【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個(gè)循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點(diǎn)B在開始時(shí)點(diǎn)C的位置,∵,∴,∴翻轉(zhuǎn)前進(jìn)的距離為:,如圖,過點(diǎn)B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點(diǎn)B的坐標(biāo)為.故答案為:.【點(diǎn)睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關(guān)鍵.5、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn),先求出A點(diǎn)坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時(shí),OM也最小,即當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點(diǎn)∵點(diǎn)C的坐標(biāo)為(2,2),圓C與x軸相切于點(diǎn)A,∴點(diǎn)A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點(diǎn),又∵M(jìn)是AB的中點(diǎn),∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時(shí),OM也最小,∴當(dāng)B運(yùn)動(dòng)到時(shí),BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了坐標(biāo)與圖形,一點(diǎn)到圓上一點(diǎn)的距離得到最小值,兩點(diǎn)距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.6、4【分析】設(shè)一直角邊長(zhǎng)為x,另一直角邊長(zhǎng)為(6-x)根據(jù)勾股定理,解一元二次方程求出,根據(jù)這個(gè)直角三角形的斜邊長(zhǎng)為外接圓的直徑,可求外接圓的半徑為cm,利用三角形面積公式求即可.【詳解】解:設(shè)一直角邊長(zhǎng)為x,另一直角邊長(zhǎng)為(6-x),∵三角形是直角三角形,∴根據(jù)勾股定理,整理得:,解得,這個(gè)直角三角形的斜邊長(zhǎng)為外接圓的直徑,∴外接圓的半徑為cm,三角形面積為.故答案為;.【點(diǎn)睛】本題考查直角三角形的外接圓,直角所對(duì)弦性質(zhì),勾股定理,一元二次方程,三角形面積,掌握以上知識(shí)是解題關(guān)鍵.7、5【分析】直角三角形外接圓的直徑是斜邊的長(zhǎng).【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個(gè)三角形的外接圓直徑是10,∴這個(gè)三角形的外接圓半徑長(zhǎng)為5,故答案為:5.【點(diǎn)睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長(zhǎng)是關(guān)鍵;外心是三邊垂直平分線的交點(diǎn),外心到三個(gè)頂點(diǎn)的距離相等.三、解答題1、小宇獲勝的概率是,見解析.【分析】根據(jù)題意畫樹狀圖表示出所有等可能的情況,繼而解題.【詳解】解:畫樹狀圖如下,所有機(jī)會(huì)均等的情況共9種,小宇獲勝的概率為:,答:小宇獲勝的概率是.【點(diǎn)睛】本題考查用列表法或畫樹狀圖表示概率,是基礎(chǔ)考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉(zhuǎn)前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時(shí)間,再設(shè)在OC與OD第二次相遇前,當(dāng)時(shí),需要旋轉(zhuǎn)時(shí)間為t,再分OE在OC的左側(cè)和OE在OC的右側(cè)兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋轉(zhuǎn)的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ-(60°-∠POQ)=30°.(3)解:∵射線OC平分,射線OD平分∴∠NOC=45°,∠POD=30°∴選擇前OC與OD的夾角為∠COD=∠NOC+∠NOP+∠POD=165°∴OC與OD第一次相遇的時(shí)間為165°÷(2°+3°)=33秒,此時(shí)OB旋轉(zhuǎn)的角度為33×5°=165°∴此時(shí)OC與OE的夾角165-(180-45-2×33)=96°OC與OD第二次相遇需要時(shí)間360°÷(3°+2°)=72秒設(shè)在OC與OD第二次相遇前,當(dāng)時(shí),需要旋轉(zhuǎn)時(shí)間為t①當(dāng)OE在OC的左側(cè)時(shí),有(5°-2°)t=96°-13°,解得:t=s②當(dāng)OE在OC的右側(cè)時(shí),有(5°-2°)t=96°+13°,解得:t=s然后,①②都是每隔360÷(5°-2°)=120秒,出現(xiàn)一次這種現(xiàn)象∵C、D第二次相遇需要時(shí)間72秒∴在OC與OD第二次相遇前,當(dāng)時(shí),、旋轉(zhuǎn)時(shí)間t的值為s或s.【點(diǎn)睛】本題主要考查了角平分線的定義、平角的定義、一元一次方程的應(yīng)用等知識(shí)點(diǎn),靈活運(yùn)用相關(guān)知識(shí)成為解答本題的關(guān)鍵.3、(1)見解析;(2)【分析】(1)如圖所示,連接OA,由圓周角定理可得∠COA=90°,再由平行線的性質(zhì)得到∠OAD+∠COA=180°,則∠OAD=90°,由此即可證明;(2)連接OB,過點(diǎn)O作OE⊥AB,垂足為E,先由等腰三角形的性質(zhì)與三角形內(nèi)角和定理求出∠COB=30°,則∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出,則AB=.【詳解】解:(1)如圖所示,連接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵點(diǎn)A在圓O上,∴AD是⊙O的切線;(2)連接OB,過點(diǎn)O作OE⊥AB,垂足為E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)證可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,∴OE=AO=1,由勾股定理可得,,∴AB=.【點(diǎn)睛】本題主要考查了圓周角定理,切線的判定,等腰三角形的性質(zhì)與判定,含30度角的直角三角形的性質(zhì),三角形內(nèi)角和定理,勾股定理,熟知相關(guān)知識(shí)是解題的關(guān)鍵.4、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點(diǎn)的坐標(biāo);(2)根據(jù)位似圖形的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置,從而得到點(diǎn)的坐標(biāo);(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計(jì)算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設(shè)其半徑為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論