2023年云南省楚雄市中考數(shù)學(xué)全真模擬模擬題附答案詳解(輕巧奪冠)_第1頁
2023年云南省楚雄市中考數(shù)學(xué)全真模擬模擬題附答案詳解(輕巧奪冠)_第2頁
2023年云南省楚雄市中考數(shù)學(xué)全真模擬模擬題附答案詳解(輕巧奪冠)_第3頁
2023年云南省楚雄市中考數(shù)學(xué)全真模擬模擬題附答案詳解(輕巧奪冠)_第4頁
2023年云南省楚雄市中考數(shù)學(xué)全真模擬模擬題附答案詳解(輕巧奪冠)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省楚雄市中考數(shù)學(xué)全真模擬模擬題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°2、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或33、已知學(xué)校航模組設(shè)計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達(dá)式h=﹣t2+24t+1,則下列說法中正確的是(

)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m4、如圖,正方形邊長為4,、、、分別是、、、上的點,且.設(shè)、兩點間的距離為,四邊形的面積為,則與的函數(shù)圖象可能是(

)A. B. C. D.5、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能二、多選題(5小題,每小題3分,共計15分)1、關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題,其中正確的命題是()A.當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.當(dāng)c>0,且函數(shù)的圖象開口向下時,方程ax2+bx+c=0必有兩個不相等的實根;C.函數(shù)圖象最高點的縱坐標(biāo)是;D.當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.2、如圖,在的網(wǎng)格中,點,,,,均在網(wǎng)格的格點上,下面結(jié)論正確的有(

)A.點是的外心 B.點是的外心C.點是的外心 D.點是的外心3、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.4、古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F(xiàn);④順次連接BC,CF,F(xiàn)A,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結(jié)論正確的是.A.△AOE的內(nèi)心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF5、下列方程一定不是一元二次方程的是(

)A. B.C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.2、已知關(guān)于的一元二次方程,有下列結(jié)論:①當(dāng)時,方程有兩個不相等的實根;②當(dāng)時,方程不可能有兩個異號的實根;③當(dāng)時,方程的兩個實根不可能都小于1;④當(dāng)時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.3、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.4、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.5、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),與y軸交于點C.下列結(jié)論:①abc>0;②3a﹣c=0;③當(dāng)x<0時,y隨x的增大而增大;④對于任意實數(shù)m,總有a﹣b≥am2﹣bm.其中正確的是_____(填寫序號).四、簡答題(2小題,每小題10分,共計20分)1、如圖所示,在銳角中,,,所對的邊分別是a,b,c,求證:.2、如圖,AB為⊙O直徑,AC為弦,過⊙O外的點D作DE⊥OA于點E,交AC于點F,連接DC并延長交AB的延長線于點H,且∠D=2∠A.(1)求證:DC與⊙O相切;(2)若⊙O半徑為4,,求AC的長.五、解答題(4小題,每小題10分,共計40分)1、某服裝店在銷售中發(fā)現(xiàn):進(jìn)貨價為每件50元,銷售價為每件90元的某品牌服裝平均每天可售出20件.現(xiàn)服裝店決定采取適當(dāng)?shù)慕祪r措施,擴(kuò)大銷售量,增加盈利.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,那么平均每天就可多售出2件.(1)求銷售價在每件90元的基礎(chǔ)上,每件降價多少元時,平均每天銷售這種服裝能盈利1200元,同時又要使顧客得到較多的實惠?(2)要想平均每天盈利2000元,可能嗎?請說明理由.2、如圖,在平面直角坐標(biāo)系中,△ABC的BC邊與x軸重合,頂點A在y軸的正半軸上,線段OB,OC()的長是關(guān)于x的方程的兩個根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個動點,過點P作PD⊥x軸,垂足為D,PD與直線AB交于點Q,設(shè)△CPQ的面積為S(),點P的橫坐標(biāo)為a,求S與a的函數(shù)關(guān)系式;(3)點M的坐標(biāo)為,當(dāng)△MAB為直角三角形時,直接寫出m的值.3、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.4、為增加農(nóng)民收入,助力鄉(xiāng)村振興.某駐村干部指導(dǎo)農(nóng)戶進(jìn)行草莓種植和銷售,已知草莓的種植成本為8元/千克,經(jīng)市場調(diào)查發(fā)現(xiàn),今年五一期間草莓的銷售量y(千克)與銷售單價x(元/千克)(8≤x≤40)滿足的函數(shù)圖象如圖所示.(1)根據(jù)圖象信息,求y與x的函數(shù)關(guān)系式;(2)求五一期間銷售草莓獲得的最大利潤.-參考答案-一、單選題1、B【分析】求出正五邊形的一個內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點睛】本題考查了正多邊形和圓,求出正五邊形的一個內(nèi)角度數(shù)是解決問題的關(guān)鍵.2、A【解析】【分析】設(shè)x2-3x=y.將y代入原方程得到關(guān)于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設(shè)x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當(dāng)y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當(dāng)y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理.3、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當(dāng)t=1時,h=24;當(dāng)t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當(dāng)t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當(dāng)t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).4、A【解析】【分析】本題考查了動點的函數(shù)圖象,先判定圖中的四個小直角三角形全等,再用大正方形的面積減去四個直角三角形的面積,得函數(shù)y的表達(dá)式,結(jié)合選項的圖象可得答案.【詳解】解:∵正方形ABCD邊長為4,AE=BF=CG=DH∴AH=BE=CF=DG,∠A=∠B=∠C=∠D∴△AEH≌△BFE≌△CGF≌△DHG∴y=4×4-x(4-x)×4=16-8x+2x2=2(x-2)2+8∴y是x的二次函數(shù),函數(shù)的頂點坐標(biāo)為(2,8),開口向上,從4個選項來看,開口向上的只有A和B,C和D圖象開口向下,不符合題意;但是B的頂點在x軸上,故B不符合題意,只有A符合題意.故選:A.【考點】本題考查了動點問題的函數(shù)圖象,正確地寫出函數(shù)解析式并數(shù)形結(jié)合分析是解題的關(guān)鍵.5、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.二、多選題1、ABD【解析】【分析】根據(jù)c與0的關(guān)系判斷二次函數(shù)y=ax2+bx+c與y軸交點的情況;根據(jù)頂點坐標(biāo)與拋物線開口方向判斷函數(shù)的最值;根據(jù)函數(shù)y=ax2+c的圖象與y=ax2圖象相同,判斷函數(shù)y=ax2+c的圖象對稱軸.【詳解】解:A.c是二次函數(shù)y=ax2+bx+c與y軸的交點,所以當(dāng)c=0時,函數(shù)的圖象經(jīng)過原點;B.c>0時,二次函數(shù)y=ax2+bx+c與y軸的交點在y軸的正半軸,又因為函數(shù)的圖象開口向下,所以方程ax2+bx+c=0必有兩個不相等的實根;C.當(dāng)a<0時,函數(shù)圖象最高點的縱坐標(biāo)是;當(dāng)a>0時,函數(shù)圖象最低點的縱坐標(biāo)是;由于a值不定,故無法判斷最高點或最低點;D.當(dāng)b=0時,二次函數(shù)y=ax2+bx+c變?yōu)閥=ax2+c,又因為y=ax2+c的圖象與y=ax2圖象相同,所以當(dāng)b=0時,函數(shù)的圖象關(guān)于y軸對稱.故選:ABD.【考點】二次函數(shù)y=ax2+bx+c最值,掌握當(dāng)a<0時,函數(shù)的最大值是;當(dāng)a>0時,函數(shù)的最小值是是解題關(guān)鍵.2、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據(jù)三角形外心的定義可對四個選項進(jìn)行判斷.【詳解】解:如圖,連接HB、HD,根據(jù)勾股定理可得:,點是的外心,點是的外心,點是的外心,點是的外心,∴ABCD都是正確的.故選:ABCD.【考點】本題考查了三角形的外心和勾股定理的應(yīng)用,熟練掌握三角形的外心到三角形的三個頂點的距離相等是解決本題的關(guān)鍵.3、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識,解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個知識點之間的融會貫通.4、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內(nèi)心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復(fù)雜作圖,等邊三角形的判定和性質(zhì),菱形的判定和性質(zhì),三角形的內(nèi)心,外心等知識,解題的關(guān)鍵是證明四邊形AEOF,四邊形AODE都是菱形.5、AB【解析】【分析】根據(jù)只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程進(jìn)行分析即可.【詳解】解:A、分母含有未知數(shù),一定不是一元二次方程,故本選項符合題意;B、含有兩個未知數(shù),一定不是一元二次方程,故本選項符合題意;C、當(dāng)a=0時,不是一元二次方程,當(dāng)a≠0時,是一元二次方程,故本選項不符合題意;D、是一元二次方程,故本選項不符合題意.故選:AB.【考點】本題考查的是一元二次方程的定義,熟知只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程是解答此題的關(guān)鍵.三、填空題1、5【分析】先根據(jù)垂徑定理求出AC的長,設(shè)⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設(shè)⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,利用勾股定理求解是解答此題的關(guān)鍵.2、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進(jìn)行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當(dāng),即時,方程有兩個不相等的實根;故①正確;當(dāng),解得:,方程有兩個同號的實數(shù)根,則當(dāng)時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當(dāng)時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學(xué)的知識進(jìn)行解題.3、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據(jù)菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).4、【分析】根據(jù)題中點的坐標(biāo)可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負(fù)性即可得.【詳解】解:如圖所示:當(dāng)點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當(dāng)時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.5、①④##④①【解析】【分析】根據(jù)拋物線的對稱軸,開口方向,與軸的交點位置,即可判斷①,根據(jù)二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),即可求得對稱軸,以及當(dāng)時,,進(jìn)而可以判斷②③,根據(jù)頂點求得函數(shù)的最大值,即可判斷④.【詳解】解:拋物線開口向下,,對稱軸,,拋物線與軸交于正半軸,,,故①正確,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣3,0),B(1,0),對稱軸為,則,當(dāng),,,故②不正確,由函數(shù)圖象以及對稱軸為,可知,當(dāng)時,隨的增大而增大,故③不正確,對稱軸為,則當(dāng)時,取得最大值,對于任意實數(shù)m,總有,即,故④正確.故答案為:①④.【考點】本題考查了二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合是解題的關(guān)鍵.四、簡答題1、見解析【解析】【分析】方法1:過點A作于點D,根據(jù),可得,由此可得,由此可得結(jié)論;方法2:過點A作于點D,根據(jù)可得,由此可表示三角形的面積,根據(jù)面積相等可得相應(yīng)等式,由此可得結(jié)論;方法3:作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD,根據(jù)圓周角定理可得,由此可得結(jié)論.【詳解】解:方法1如圖所示,過點A作于點D,則,在中,,∴,在中,,∴,∴,∴.同理可證,.∴.方法2如圖所示,過點A作于點D,則,在中,在中,,∴,∴,同理可得,∴,∴,∴,∴.方法3如圖所示,作的外接圓,設(shè)的半徑為r,作直徑BD,連接CD.∵BD是的直徑,∴.∴,∴,同理可得,.∴.2、(1)證明見解析(2)【解析】【分析】(1)連接OC,由圓周角定理和已知條件得出∠BOC=∠D,證出∠OCH=90°,得出DC⊥OC,即可得出結(jié)論;(2)作AG⊥CD于G,則AG∥OC,由三角函數(shù)定義求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,證△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.【詳解】(1)證明:連接OC,如圖1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC與⊙O相切;(2)作AG⊥CD于G,如圖2所示:則AG∥OC,∵DC⊥OC,∴∠OCH=90°,∵∠BOC=∠D,OC=4,∴cos∠BOC==,∴OH=OC=5,∴AH=OA+OH=4+5=9,CH===3,∵AG∥OC,∴△OCH∽△AGH,∴===,∴AG=OC=,GH=CH=,∴CG=GH﹣CH=﹣3=,∴AC===.【考點】本題考查圓的綜合問題,涉及切線的判定、勾股定理、銳角三角函數(shù),相似三角形等知識,屬于中等題型.熟練掌握圓的切線的證明方法以及圓周角定理是解題的關(guān)鍵.五、解答題1、(1)每件降價20元(2)不可能,理由見解析【解析】【分析】(1)根據(jù)題意列出方程,即每件服裝的利潤×銷售量=總盈利,再求解,把不符合題意的舍去;(2)根據(jù)題意列出方程進(jìn)行求解即可.(1)解:設(shè)每件服裝降價x元.由題意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,為使顧客得到較多的實惠,應(yīng)取x=20;答:每件降價20元時,平均每天銷售這種服裝能盈利1200元,同時又要使顧客得到較多的實惠;(2)解:不可能,理由如下:依題意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30)2-4×600=900-2400=-1500<0,則原方程無實數(shù)解.則不可能每天盈利2000元.【考點】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出一元二次方程.2、(1);(2);(3)m的值為-3或-1或2或7;【解析】【分析】(1)根據(jù)一元二次方程的解求出OB和OC的長度,然后得到點B,點C坐標(biāo)和OA的長度,進(jìn)而得到點A坐標(biāo),最后使用待定系數(shù)法即可求出直線AC的解析式;(2)根據(jù)點A,點B坐標(biāo)使用待定系數(shù)法求出直線AB的解析式,根據(jù)直線AB解析式和直線AC解析式求出點P,Q,D坐標(biāo),進(jìn)而求出PQ和CD的長度,然后根據(jù)三角形面積公式求出S,最后對a的值進(jìn)行分類討論即可;(3)根據(jù)△MAB的直角頂點進(jìn)行分類討論,然后根據(jù)勾股定理求解即可.(1)解:解方程得,,∵線段OB,OC()的長是關(guān)于x的方程的兩個根,∴OB=1,OC=6,∴,,∵CO=2AO,∴OA=3,∴,設(shè)直線AC的解析式為,把點,代入得,解得,∴直線AC的解析式為;(2)解:設(shè)直線AB的解析式為y=px+q,把,代入直線AB解析式得,解得,∴直線AB的解析式為,∵PD⊥x軸,垂足為D,PD與直線AB交于點Q,點P的橫坐標(biāo)為a,∴,,,∴,,∴,當(dāng)點P與點A或點C重合時,即當(dāng)a=0或時,此時S=0,不符合題意,當(dāng)時,,當(dāng)時,,當(dāng)時,,∴;(3)解:∵,,,∴,,,當(dāng)∠MAB=90°時,,∴,解得,當(dāng)∠ABM=90°時,,∴,解得m=7,當(dāng)∠AMB=90°時,,∴,解得,,∴m的值為-3或-1或2或7.【考點】本題考查解一元二次方程、待定系數(shù)法求一次函數(shù)解析式、三角形面積公式、勾股定理,正確應(yīng)用分類討論思想是解題關(guān)鍵.3、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論