《第8章 整式乘法》題型過關(guān)專練(基礎(chǔ)+中等類型)(解析版)_第1頁
《第8章 整式乘法》題型過關(guān)專練(基礎(chǔ)+中等類型)(解析版)_第2頁
《第8章 整式乘法》題型過關(guān)專練(基礎(chǔ)+中等類型)(解析版)_第3頁
《第8章 整式乘法》題型過關(guān)專練(基礎(chǔ)+中等類型)(解析版)_第4頁
《第8章 整式乘法》題型過關(guān)專練(基礎(chǔ)+中等類型)(解析版)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第8章整式乘法【類型覆蓋】類型一、單項(xiàng)式乘單項(xiàng)式【解惑】下列運(yùn)算正確的是(

)A. B. C. D.【答案】C【分析】本題考查了同底數(shù)冪的乘除法,積的乘方,單項(xiàng)式乘以單項(xiàng)式,熟練掌握以上運(yùn)算法則是解題的關(guān)鍵.根據(jù)同底數(shù)冪的乘除法,積的乘方,單項(xiàng)式乘以單項(xiàng)式,逐項(xiàng)計(jì)算即可求解.【詳解】解:A.,故該選項(xiàng)不正確,不符合題意;

B.,故該選項(xiàng)不正確,不符合題意;

C.,故該選項(xiàng)正確,符合題意;

D.,故該選項(xiàng)不正確,不符合題意;故選:C.【融會(huì)貫通】1.下面的計(jì)算,不正確的是(

)A. B.C. D.【答案】C【分析】此題考查了合并同類項(xiàng)、單項(xiàng)式的乘法、冪的乘方等知識(shí),根據(jù)相關(guān)運(yùn)算法則計(jì)算即可.【詳解】A、,故選項(xiàng)正確,不符合題意;B、,故選項(xiàng)正確,不符合題意;C、,故選項(xiàng)不正確,符合題意;

D、,故選項(xiàng)正確,不符合題意;故選:C2.計(jì)算:.【答案】【分析】本題考查了單項(xiàng)式乘單項(xiàng)式,熟練掌握運(yùn)算法則是解題的關(guān)鍵.根據(jù)單項(xiàng)式乘單項(xiàng)式的法則計(jì)算即可.【詳解】解:,故答案為:.3.計(jì)算下列各題:(1);(2).【答案】(1)(2)【分析】本題主要考查了整式運(yùn)算,熟練掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.(1)首先進(jìn)行積的乘方運(yùn)算,然后進(jìn)行單項(xiàng)式乘以單項(xiàng)式運(yùn)算即可;(2)首先進(jìn)行單項(xiàng)式乘以單項(xiàng)式運(yùn)算、積的乘方運(yùn)算和同底數(shù)冪除法運(yùn)算,然后合并同類項(xiàng)即可.【詳解】(1)解:原式;(2)解:原式.類型二、單項(xiàng)式乘多項(xiàng)式【解惑】下列運(yùn)算中,結(jié)果正確的是(

)A. B.C. D.【答案】C【分析】本題考查整數(shù)運(yùn)算,涉及合并同類項(xiàng)、整式乘法運(yùn)算等知識(shí),由合并同類項(xiàng)及整式乘法運(yùn)算逐項(xiàng)驗(yàn)證即可得到答案,熟記合并同類項(xiàng)、整式乘法運(yùn)算等知識(shí)是解決問題的關(guān)鍵.【詳解】解:A、,選項(xiàng)計(jì)算錯(cuò)誤,不符合題意;B、與不是同類項(xiàng),不能合并,選項(xiàng)計(jì)算錯(cuò)誤,不符合題意;C、,計(jì)算正確,符合題意;D、,選項(xiàng)計(jì)算錯(cuò)誤,不符合題意;故選:C.【融會(huì)貫通】1.已知,則代數(shù)式的值為(

)A.3 B. C. D.8【答案】B【分析】利用整體思想進(jìn)行,將所求的代數(shù)式進(jìn)行化簡成和已知代數(shù)式相同的形式,然后進(jìn)行代入求值.本題考查了代數(shù)式的求值,解題的關(guān)鍵是:運(yùn)用等式的性質(zhì)進(jìn)行變形.【詳解】解:∵,∴,∴,故選:B.2.計(jì)算:.【答案】/【分析】本題主要考查了單項(xiàng)式乘以多項(xiàng)式,直接根據(jù)單項(xiàng)式乘以多項(xiàng)式的計(jì)算法則求解即可.【詳解】解:,故答案為;.3.先化簡后求值:,其中.【答案】【分析】本題考查了單項(xiàng)式乘以多項(xiàng)式及合并同類項(xiàng),熟練掌握單項(xiàng)式乘以多項(xiàng)式及合并同類項(xiàng)是解題的關(guān)鍵.先計(jì)算單項(xiàng)式乘以多項(xiàng)式,然后合并同類項(xiàng),得到,再將代入計(jì)算,即得答案.【詳解】,當(dāng)時(shí),原式.類型三、多項(xiàng)式乘多項(xiàng)式【解惑】計(jì)算的結(jié)果為(

)A. B. C. D.【答案】D【分析】本題考查了多項(xiàng)式乘以多項(xiàng)式,熟練掌握多項(xiàng)式乘以多項(xiàng)式得運(yùn)算法則是解題關(guān)鍵.根據(jù)多項(xiàng)式乘以多項(xiàng)式運(yùn)算即可.【詳解】解:.故選:D.【融會(huì)貫通】1.利用多項(xiàng)式相乘的知識(shí)我們易得公式,我們直接套用公式可求得,我們可以逆向運(yùn)用這個(gè)公式,如果(

),那么括號(hào)里應(yīng)該填(

)A. B. C. D.【答案】B【分析】本題考查了多項(xiàng)式乘多項(xiàng)式的逆運(yùn)算,設(shè),則,解出即可作答.【詳解】解:∵,∴逆向運(yùn)用這個(gè)公式,即,依題意,設(shè),∵∴,即,解得∴,故選:B2.若,則的值是【答案】1【分析】本題主要考查了整式的化簡求值,先求出,再根據(jù)多項(xiàng)式乘以多項(xiàng)式的計(jì)算法則求出,據(jù)此代值計(jì)算即可.【詳解】解:∵,∴,∴,故答案為:1.3.觀察下列各式:①;②;③;④請(qǐng)回答下列問題:(1)總結(jié)公式:______;(2)已知a,b,m均為整數(shù),且,求m的值;(3)已知a,b,m,n均為整數(shù),且若,請(qǐng)直接寫出n的值.【答案】(1);(2)m的值為6或;(3)n的值為22或8或或【分析】此題主要考查了多項(xiàng)式乘多項(xiàng)式,熟練掌握多項(xiàng)式乘多項(xiàng)式的運(yùn)算法是解決問題的關(guān)鍵,分類討論是解決問題的難點(diǎn),漏解是易錯(cuò)點(diǎn).(1)根據(jù)已知算式的規(guī)律可得出答案;(2)根據(jù)(1)中的規(guī)律得,,再根據(jù)a,b,m均為整數(shù),①,;②,;③,;④,,據(jù)此可得m的值;(3)根據(jù)中的規(guī)律得,,,再根據(jù)a,b,m,n均為整數(shù),且得①,;②,;③,;④,,據(jù)此可得n的值.【詳解】(1)解:①;②;③;④;以此類推,,故答案為:(2)解:,由(1)得:,,,b,m均為整數(shù),有以下四種情況:①,;②,;③,;④,,①當(dāng),時(shí),,②當(dāng),時(shí),,③當(dāng),時(shí),,④當(dāng),時(shí),,綜上所述:m的值為6或(3)解:,,,,,又,b,m,n均為整數(shù),且,有以下四種情況:①,;②,;③,;④,,①當(dāng),時(shí),;②當(dāng),時(shí),;③當(dāng),時(shí),;④當(dāng),時(shí),,綜上所述:n的值為22或8或或類型四、平方差公式【解惑】已知,則的值為(

)A.17 B.13 C.5 D.1【答案】B【分析】本題考查了平方差公式和代數(shù)式求值,熟練掌握整體思想是解題關(guān)鍵.先利用平方差公式求出,再代入計(jì)算即可.【詳解】解:∵,∴,∴,故選:B.【融會(huì)貫通】1.下列各式能用平方差公式計(jì)算的是(

)A. B. C. D.【答案】C【分析】本題主要考查了平方差公式,運(yùn)用平方差公式計(jì)算時(shí)的關(guān)鍵是要找相同項(xiàng)和相反項(xiàng),其結(jié)果是相同項(xiàng)的平方減去相反項(xiàng)的平方,據(jù)此即可解答.【詳解】解:A、中只有相同的項(xiàng),故不能用平方差公式計(jì)算,故本選項(xiàng)錯(cuò)誤;B、只有互為相反數(shù)的項(xiàng),故不能用平方差公式計(jì)算,故本選項(xiàng)錯(cuò)誤;C、能用平方差公式計(jì)算,故本選項(xiàng)正確;D、中不存在相同的項(xiàng)與互為相反數(shù)的項(xiàng),,故本選項(xiàng)錯(cuò)誤.故選:C.2.計(jì)算:.【答案】/【分析】本題考查了平方差公式,熟練運(yùn)用平方差公式是解題關(guān)鍵.根據(jù)平方差公式進(jìn)行計(jì)算即可求解.【詳解】解:故答案為:.3.已知,求的值.【答案】【分析】題目主要考查利用平方差公式進(jìn)行計(jì)算,求代數(shù)式的值,根據(jù)題意,利用平方差公式化簡,然后整體代入求值計(jì)算即可.【詳解】解:.因?yàn)?,所以原式.類型五、完全平方公式【解惑】下列運(yùn)算正確的是(

)A. B.C. D.【答案】D【詳解】本題考查合并同類項(xiàng)法則、完全平方公式、積的乘方、單項(xiàng)式乘多項(xiàng)式法則,熟練掌握相關(guān)運(yùn)算法則是解題的關(guān)鍵.合并同類項(xiàng)、積的乘方運(yùn)算、計(jì)算單項(xiàng)式乘多項(xiàng)式及求值、運(yùn)用完全平方公式進(jìn)行運(yùn)算.【分析】根據(jù)合并同類項(xiàng)法則、完全平方公式、積的乘方、單項(xiàng)式乘多項(xiàng)式法則進(jìn)行計(jì)算即可.解:A、與不是同類項(xiàng),不能合并,故不符合題意;B、,故不符合題意;C、,故不符合題意;D、,故符合題意;故選:D.【融會(huì)貫通】1.整式的乘法計(jì)算正確的是(

)A. B.C. D.【答案】D【分析】本題主要考查了整式乘法,熟練掌握完全平方公式,以及平方差公式及單項(xiàng)式、多項(xiàng)式乘法運(yùn)算是解本題的關(guān)鍵.利用完全平方公式、平方差公式及單項(xiàng)式、多項(xiàng)式乘法運(yùn)算進(jìn)行判斷即可得到結(jié)果.【詳解】A.,故本選項(xiàng)錯(cuò)誤;B.,故本選項(xiàng)錯(cuò)誤;C.,故本選項(xiàng)錯(cuò)誤;D.,故本選項(xiàng)正確;故選:D.2..【答案】【分析】本題主要考查了單項(xiàng)式乘以多項(xiàng)式,完全平方公式.利用完全平方公式展開,再按照單項(xiàng)式乘以多項(xiàng)式計(jì)算即可.【詳解】解:故答案為:3.先化簡,再求值:,其中.【答案】,0【分析】此題主要考查了整式的混合運(yùn)算.先去括號(hào),再合并同類項(xiàng),最后把代入求值即可.【詳解】解:,因?yàn)?,則,所以,原式.類型六、整式乘法與圖形結(jié)合【解惑】如圖,長為,寬為的大長方形被分割為7小塊,除陰影,外,其余5塊是形狀、大小完全相同的小長方形,其較短的邊長為,當(dāng)陰影和陰影的面積和為定值時(shí),的值為(

)A.8 B.12 C.16 D.20【答案】D【分析】本題考查的是多項(xiàng)式的乘法與圖形面積,先分別計(jì)算陰影的面積與陰影的面積,可得面積和為,再進(jìn)一步解答即可.【詳解】解:由題意得:陰影的面積,陰影的面積,陰影的面積陰影的面積;陰影與陰影的面積和不會(huì)隨著的變化而變化,,,故選:D.【融會(huì)貫通】1.某校為了擴(kuò)建勞動(dòng)實(shí)踐基地,準(zhǔn)備在長寬如圖所示的長方形空地上,修建橫縱寬度均為a米的三條小路(陰影部分),其余部分(即空白部分)作為勞動(dòng)實(shí)踐基地.則勞動(dòng)實(shí)踐基地的總面積是(

)平方米.A. B.C. D.【答案】C【分析】此題考查了整式乘法的應(yīng)用,正確理解題意是解題關(guān)鍵.根據(jù)題意可得勞動(dòng)實(shí)踐基地的總面積為,合并同類項(xiàng)即可得到答案.【詳解】解:由題意可得,平方米.故選:C.2.已知正數(shù)a,b,c,滿足,.(1);(2)圖是三張疊放的正方形紙片,其邊長分別為,,,若這三張正方形紙片的面積之和為S,則S的值為.【答案】【分析】(1)由等式,得出比大,比大,由此得出比大;(2)根據(jù),得出,,將其代入,得出,通過計(jì)算三張正方形紙片的面積之和,化簡后得出,用整體代入法把代入,即可得出的值.【詳解】解:(1),,,,,,故答案為:;(2)由(1)可知:,,把,代入,得:,即:,整理,得:,這三張正方形紙片的面積之和為:,把代入,得:,故答案為:.【點(diǎn)睛】本題主要考查了等式的性質(zhì),整式的加減運(yùn)算,去括號(hào),整式的混合運(yùn)算,合并同類項(xiàng),列代數(shù)式,完全平方公式,代數(shù)式求值等知識(shí)點(diǎn),讀懂題意,正確列式計(jì)算是解題的關(guān)鍵.3.如圖,從邊長為的正方形中剪去一個(gè)邊長為的正方形.(1)若,,求的值;(2)請(qǐng)根據(jù)圖中陰影部分面積驗(yàn)證平方差公式;(3)計(jì)算:.【答案】(1)(2)見解析(3)【分析】本題考查了平方差公式的幾何應(yīng)用以及列代數(shù)式求值,正確表示出陰影部分的面積是解題關(guān)鍵.(1)根據(jù),,利用平方差公式即可求解;(2)用兩種方法分別表示出圖中陰影部分的面積,即可解答;(3)將式子變形為,再利用平方差公式計(jì)算即可.【詳解】(1)解:∵,,∴;(2)解:如圖,過點(diǎn)E作于點(diǎn),∵圖中陰影部分面積為或,∴;(3)解:原式.類型七、整式乘法中的不含某項(xiàng)【解惑】若的展開式中不含x項(xiàng),則實(shí)數(shù)m的值為(

)A. B.0 C.4 D.8【答案】D【分析】本題考查了多項(xiàng)式乘以多項(xiàng)式的法則,不含某一項(xiàng)就是該項(xiàng)的系數(shù)等于0.先根據(jù)多項(xiàng)式乘以多項(xiàng)式展開式子,合并同類項(xiàng),不含項(xiàng),就是項(xiàng)系數(shù)為0,進(jìn)而求出的值.【詳解】解:,又展開式中不含項(xiàng),,即;故選:D.【融會(huì)貫通】1.已知中不含的二次項(xiàng),則的值是(

)A.3 B.2 C. D.【答案】C【分析】整式的混合運(yùn)算:有乘方、乘除的混合運(yùn)算中,要按照先乘方后乘除再加減的順序運(yùn)算,其運(yùn)算順序和有理數(shù)的混合運(yùn)算順序相似;若多項(xiàng)式中不含某一項(xiàng),則該項(xiàng)系數(shù)為0.【詳解】解:∵原式中不含的二次項(xiàng),∴,解得:,故選:C.【點(diǎn)睛】本題主要考查了整式的混合運(yùn)算,熟記運(yùn)算規(guī)則是關(guān)鍵.2.已知關(guān)于x的多項(xiàng)式與的積不含二次項(xiàng)和三次項(xiàng),則.【答案】3【分析】本題主要考查多項(xiàng)式乘多項(xiàng)式,多項(xiàng)式的項(xiàng)、次數(shù)的定義以及代數(shù)式求值,解題的關(guān)鍵是熟練掌握運(yùn)算法則正確進(jìn)行計(jì)算.先運(yùn)用多項(xiàng)式乘多項(xiàng)式的運(yùn)算法則進(jìn)行運(yùn)算并整理,再令二次項(xiàng)和三次項(xiàng)的系數(shù)分別為0即可求解.【詳解】解:,∵關(guān)于x的多項(xiàng)式與的積不含二次項(xiàng)和三次項(xiàng),∴,,解得,,∴.故答案為:3.3.已知的展開式中不含項(xiàng).(1)求的值;(2)當(dāng)時(shí),化簡求值:.【答案】(1)(2);【分析】本題考查整式混合運(yùn)算,涉及多項(xiàng)式乘以多項(xiàng)式、單項(xiàng)式乘以多項(xiàng)式、乘方公式等知識(shí),熟練掌握整式混合運(yùn)算法則是解決問題的關(guān)鍵.(1)利用多項(xiàng)式乘以多項(xiàng)式展開,再由的展開式中不含項(xiàng)得到求解即可得到答案;(2)利用平方差公式、完全平方和公式及整式加減運(yùn)算化簡,再將代入求值即可得到答案.【詳解】(1)解:,∵的展開式中不含x3項(xiàng),∴,∴;(2)解:,當(dāng)時(shí),原式.類型八、完全平方公式的變形求值【解惑】已知,,則(

)A.13 B.19 C.26 D.31【答案】A【分析】本題考查了利用完全平方公式計(jì)算,將式子變形為,整體代入計(jì)算即可得解.【詳解】解:∵,,∴,故選:A.【融會(huì)貫通】1.已知,,則的值為(

)A. B. C. D.【答案】A【分析】本題考查了利用完全平方公式的變形求解和整體代入法求代數(shù)式的值,熟練掌握完全平方公式是解答本題的關(guān)鍵;把已知條件兩邊平方,根據(jù)完全平方公式展開,然后代入數(shù)據(jù)計(jì)算即可求解.【詳解】解:,,,;故選:A2.已知,,則.【答案】6【分析】本題主要考查了完全平方公式,根據(jù)完全平方公式得到,再由,即可求出.【詳解】解:∵,∴,又∵,∴,∴,故答案為:6.3.已知,求下列代數(shù)式的值:(1);(2).【答案】(1)11(2)626【分析】題目主要考查利用完全平方公式變形求值,熟練掌握完全平方公式是解題關(guān)鍵.(1)根據(jù)完全平方公式變形求值即可;(2)根據(jù)完全平方公式變形求值即可.【詳解】(1)解:因?yàn)?,所以.?)因?yàn)?,所以,所以.類型九、平方差公式與完全平方公式巧算【解惑】請(qǐng)用簡便方法計(jì)算:.【答案】【分析】根據(jù)題意,得,利用完全平方公式解答即可.本題考查了完全平方公式的應(yīng)用,熟練掌握公式是解題的關(guān)鍵.【詳解】解:.【融會(huì)貫通】1.簡便方法計(jì)算:.【答案】4【分析】本題主要考查了平方差公式進(jìn)行簡便運(yùn)算,熟練掌握知識(shí)點(diǎn)是解題的關(guān)鍵.將變形為,利用平方差公式即可求解.【詳解】解:.2.用簡便方法計(jì)算:(1)(2)【答案】(1)252004(2)1【分析】本題考查利用平方差公式和完全平方公式簡便計(jì)算,熟練掌握平方差公式和完全平方公式是解題關(guān)鍵.(1)由,結(jié)合完全平方公式計(jì)算即可;(2)由,結(jié)合平方差公式計(jì)算即可.【詳解】(1)解:,;(2)解:.3.簡便運(yùn)算:(1);(2).【答案】(1)1;(2).【分析】本題考查了平方差公式,同底數(shù)冪的乘法,積的乘方,理清指數(shù)的變化是解題的關(guān)鍵;(1)根據(jù)平方差公式計(jì)算即可;(2)根據(jù)同底數(shù)冪的乘法運(yùn)算法則計(jì)算即可.【詳解】(1)(2)類型十、整式的四則混合運(yùn)算【解惑】計(jì)算或化簡:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【分析】本題主要考查了積的乘方逆用、零次冪、實(shí)數(shù)的混合運(yùn)算、整式的混合運(yùn)算等知識(shí)點(diǎn),掌握相關(guān)運(yùn)算法則成為解題的關(guān)鍵.(1)先運(yùn)用零次冪以及積的乘方逆用進(jìn)行簡便

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論