2022年吉林省延吉市中考數(shù)學能力檢測試卷【培優(yōu)A卷】附答案詳解_第1頁
2022年吉林省延吉市中考數(shù)學能力檢測試卷【培優(yōu)A卷】附答案詳解_第2頁
2022年吉林省延吉市中考數(shù)學能力檢測試卷【培優(yōu)A卷】附答案詳解_第3頁
2022年吉林省延吉市中考數(shù)學能力檢測試卷【培優(yōu)A卷】附答案詳解_第4頁
2022年吉林省延吉市中考數(shù)學能力檢測試卷【培優(yōu)A卷】附答案詳解_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省延吉市中考數(shù)學能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°2、如圖,,,,都是上的點,,垂足為,若,則的度數(shù)為()A. B. C. D.3、在某籃球邀請賽中,參賽的每兩個隊之間都要比賽一場,共比賽36場,設有x個隊參賽,根據(jù)題意,可列方程為()A. B.C. D.4、下列事件為隨機事件的是()A.四個人分成三組,恰有一組有兩個人 B.購買一張福利彩票,恰好中獎C.在一個只裝有白球的盒子里摸出了紅球 D.擲一次骰子,向上一面的點數(shù)小于75、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉(zhuǎn)90°,得到,則點的坐標為(

).A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、下列圖形中,是中心對稱圖形的是(

)A. B.C. D.2、下列說法正確的是(

)A.“射擊運動員射擊一次,命中靶心”是隨機事件B.某彩票的中獎機會是1%,買100張一定會中獎C.拋擲一枚質(zhì)地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學生,為了解學生最喜歡的課外體育運動項目,隨機抽取了200名學生,其中有85名學生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人3、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(

)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是24、如圖在四邊形中,,,,為的中點,以點為圓心、長為半徑作圓,恰好使得點在圓上,連接,若,則下列說法中正確的是(

)A.是劣弧的中點 B.是圓的切線C. D.5、如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論中正確的結(jié)論是()A.△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到B.點O與O′的距離為4C.∠AOB=150°D.S四邊形AOBO′=6+3E.S△AOC+S△AOB=6+第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.2、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.3、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.4、如圖所示,AB是⊙O的直徑,弦CD⊥AB于H,∠A=30°,OH=1,則⊙O的半徑是______.5、《九章算術(shù)》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據(jù)題意,那么可列方程___________.四、簡答題(2小題,每小題10分,共計20分)1、拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(﹣1,0),點C的坐標為(0,﹣3).點P為拋物線y=x2+bx+c上的一個動點.過點P作PD⊥x軸于點D,交直線BC于點E.(1)求b、c的值;(2)設點F在拋物線y=x2+bx+c的對稱軸上,當△ACF的周長最小時,直接寫出點F的坐標;(3)在第一象限,是否存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍?若存在,求出點P所有的坐標;若不存在,請說明理由.2、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.五、解答題(4小題,每小題10分,共計40分)1、如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB'C′的位置,使得CC′AB,求∠CC'A的度數(shù).2、如圖,點A是外一點,過點A作出的一條切線.(使用尺規(guī)作圖,作出一條即可,不要求寫出作法,不要求證明,但要保留作圖痕跡)3、在直角坐標平面內(nèi),三個頂點的坐標分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標是____________;(2)以點B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點的坐標;(3)若是外接圓,求的半徑.4、某賓館共有80間客房.賓館負責人根據(jù)經(jīng)驗作出預測:今年5月份,每天的房間空閑數(shù)y(間)與定價x(元/間)之間滿足y=x﹣42(x≥168).若賓館每天的日常運營成本為4000元,有客人入住的房間,賓館每天每間另外還需支出36元的各種費用,賓館想要獲得最大利潤,同時也想讓客人得到實惠.(1)求入住房間z(間)與定價x(元/間)之間關(guān)系式;(2)應將房間定價確定為多少元時,獲得利潤最大?求出最大利潤?-參考答案-一、單選題1、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、B【分析】連接OC.根據(jù)確定,,進而計算出,根據(jù)圓心角的性質(zhì)求出,最后根據(jù)圓周角的性質(zhì)即可求出.【詳解】解:如下圖所示,連接OC.∵,∴,.∴.∵.∴.∴∵和分別是所對的圓周角和圓心角,∴.故選:B.【點睛】本題考查垂徑定理,圓心角的性質(zhì),圓周角的性質(zhì),綜合應用這些知識點是解題關(guān)鍵.3、A【解析】【分析】共有x個隊參加比賽,則每隊參加(x-1)場比賽,但2隊之間只有1場比賽,根據(jù)共安排36場比賽,列方程即可.【詳解】解:設有x個隊參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,故選A.【考點】此題考查由實際問題抽象出一元二次方程,解題關(guān)鍵在于得到比賽總場數(shù)的等量關(guān)系.4、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、四個人分成三組,恰有一組有兩個人,是必然事件,不合題意;B、購買一張福利彩票,恰好中獎,是隨機事件,符合題意;C、在一個只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點數(shù)小于7,是必然事件,不合題意;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【解析】【分析】根據(jù)網(wǎng)格結(jié)構(gòu)作出旋轉(zhuǎn)后的圖形,然后根據(jù)平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網(wǎng)格結(jié)構(gòu),作出圖形是解題的關(guān)鍵.二、多選題1、BD【解析】【分析】根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.2、ACD【解析】【分析】根據(jù)隨機事件的定義(隨機事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據(jù)計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質(zhì)地均勻的硬幣兩次,所有可能出現(xiàn)的結(jié)果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據(jù)計算公式該項人數(shù)等于該項所占百分比乘以總?cè)藬?shù),,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機事件的定義,概率發(fā)生的可能性、求隨機事件的概率與求某項的人數(shù),根據(jù)等可能事件的概率公式求解是解題關(guān)鍵.3、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).4、ABC【解析】【分析】直接利用圓周角定理以及結(jié)合圓心角、弧、弦的關(guān)系、切線的判定方法、平行線的判定方法、四邊形內(nèi)角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項錯誤.故選擇ABC.【考點】此題主要考查了切線的判定以及圓周角與弧的關(guān)系、四邊形內(nèi)角和、平行線的判定方法等知識,正確掌握相關(guān)判定方法是解題關(guān)鍵.5、ABCE【解析】【分析】證明可判斷證明是等邊三角形,可判斷利用是等邊三角形,證明可判斷由是等邊三角形,可得四邊形的面積,可判斷如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應,同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,從而可判斷【詳解】解:由題意得:為等邊三角形,△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到,故符合題意;如圖,連接,由是等邊三角形,則點O與O′的距離為4,故符合題意;故符合題意;如圖,過作于是等邊三角形,S四邊形AOBO′=故不符合題意;如圖,將繞點逆時針旋轉(zhuǎn)與重合,對應,同理可得:是邊長為的等邊三角形,是邊長為的直角三角形,同理可得:故符合題意;故選:【考點】本題考查的是等邊三角形的判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),勾股定理與勾股定理的逆定理的應用,全等三角形的判定與性質(zhì),熟練的做出正確的輔助線是解題的關(guān)鍵.三、填空題1、

1

【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設,則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設,則,,在中,,∴當時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.2、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.3、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.4、2【分析】連接OC,利用半徑相等以及三角形的外角性質(zhì)求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性質(zhì)即可求解.【詳解】解:連接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案為:2.【點睛】本題考查了垂徑定理和含30°角的直角三角形的性質(zhì).熟練掌握垂徑定理是解題的關(guān)鍵.5、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關(guān)于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.四、簡答題1、(1)(2)(3)存在,P的坐標為【解析】【分析】(1)把A、C點的坐標代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點F,此時ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點坐標便可.(3)設P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點的坐標代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點F,連接AF,如圖1,此時,AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設直線BC的解析式為得解得∴直線BC的解析式為:∴當時,(3)解:設P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗,,即故m=5∴點P的坐標為P(5,12).故存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍,其P點坐標為【考點】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.2、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵MN∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點】本題考查了作圖-應用與設計作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應用.首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應幾何圖形的性質(zhì)和基本作圖的方法作圖.五、解答題1、∠CC'A=70°【解析】【分析】先根據(jù)平行線的性質(zhì),由得∠AC′C=∠CAB=70°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得AC=AC′,∠BAB′=∠CAC′,于是根據(jù)等腰三角形的性質(zhì)有∠ACC′=∠AC′C=70°.【詳解】∵,∴∠ACC′=∠CAB=70°,∵△ABC繞點A旋轉(zhuǎn)到△AB′C′的位置,∴AC=AC′,∠BAB′=∠CAC′,在△ACC′中,∵AC=AC′∴∠ACC′=∠CC'A=70°,【考點】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2、見解析【分析】先作線段的垂直平分線.確定的中點,再以中點為圓心,一半為半徑作圓交于點,然后作直線,則根據(jù)圓周角定理可得為所求.【詳解】如圖,直線AB就是所求作的,(作法不唯一,作出一條即可,需要有作圖痕跡)【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論