2022年山東省龍口市中考數(shù)學??寄M試題及完整答案詳解【網(wǎng)校專用】_第1頁
2022年山東省龍口市中考數(shù)學??寄M試題及完整答案詳解【網(wǎng)校專用】_第2頁
2022年山東省龍口市中考數(shù)學模考模擬試題及完整答案詳解【網(wǎng)校專用】_第3頁
2022年山東省龍口市中考數(shù)學??寄M試題及完整答案詳解【網(wǎng)校專用】_第4頁
2022年山東省龍口市中考數(shù)學??寄M試題及完整答案詳解【網(wǎng)校專用】_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省龍口市中考數(shù)學??寄M試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、平面直角坐標系中點關(guān)于原點對稱的點的坐標是()A. B. C. D.2、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.3、如圖,在中,為的直徑,和相切于點E,和相交于點F,已知,,則的長為(

)A. B. C. D.24、如圖圖案中,不是中心對稱圖形的是()A. B. C. D.5、正方形的邊長為4,若邊長增加x,那么面積增加y,則y關(guān)于x的函數(shù)表達式為(

)A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、在同一平面直角坐標系中,函數(shù)y=ax2+bx與y=bx+a的圖象不可能是()A. B.C. D.2、下列命題中不正確的命題有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=33、下列說法中,正確的有()A.等弧所對的圓心角相等B.經(jīng)過三點可以作一個圓C.平分弦的直徑垂直于這條弦D.圓的內(nèi)接平行四邊形是矩形4、等腰三角形三邊長分別為a,b,3,且a,b是關(guān)于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.185、已知拋物線上部分點的橫坐標x與縱坐標y的對應(yīng)值如表所示,對于下列結(jié)論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當時,x的取值范圍是或.正確的是(

)A.① B.② C.③ D.④第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.2、《九章算術(shù)》是我國古代的數(shù)學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.3、拋物線y=ax2+bx+c(a≠0)的部分圖象如圖所示,其與x軸的一個交點坐標為(﹣3,0),對稱軸為x=﹣1,則當y<0時,x的取值范圍是_____.4、已知⊙A的半徑為5,圓心A(4,3),坐標原點O與⊙A的位置關(guān)系是______.5、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.四、簡答題(2小題,每小題10分,共計20分)1、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.2、如圖,在中,,,,為的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、、重合),過點作的垂線交折線于點.以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點的運動時間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當點落在的邊上時,求的值;(3)當矩形與重疊部分圖形不是矩形時,求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.五、解答題(4小題,每小題10分,共計40分)1、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.2、隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻?、便捷.某校?shù)學興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖.請結(jié)合圖中所給的信息解答下列問題:(1)這次活動共調(diào)查了______人,并補充完整條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.3、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學過的圖形變換,在圖2,3的方格紙中設(shè)計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.4、如圖,⊙O的半徑弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.-參考答案-一、單選題1、B【分析】根據(jù)關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),即可求解.【詳解】解:平面直角坐標系中點關(guān)于原點對稱的點的坐標是故選B【點睛】本題考查了關(guān)于原點對稱的點的特征,掌握關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù)是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.3、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據(jù)弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點】本題考查切線的性質(zhì)、平行四邊形的性質(zhì)、弧長公式等知識,解題的關(guān)鍵是求出圓心角的度數(shù),記住弧長公式.4、C【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心求解.【詳解】解:A、是中心對稱圖形,故A選項不合題意;B、是中心對稱圖形,故B選項不合題意;C、不是中心對稱圖形,故C選項符合題意;D、是中心對稱圖形,故D選項不合題意;故選:C.【點睛】本題考查了中心對稱圖形的知識,解題的關(guān)鍵是掌握中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后重合.5、C【解析】【分析】加的面積=新正方形的面積-原正方形的面積,把相關(guān)數(shù)值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.【考點】本題考查列二次函數(shù)關(guān)系式;得到增加的面積的等量關(guān)系是解決本題的關(guān)鍵.二、多選題1、ABD【解析】【分析】首先根據(jù)圖形中給出的一次函數(shù)圖象確定a、b的符號,進而運用二次函數(shù)的性質(zhì)判斷圖形中給出的二次函數(shù)的圖象是否符合題意,根據(jù)選項逐一討論解析,即可解決問題.【詳解】A、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,對稱軸x=<0,應(yīng)在y軸的左側(cè),圖形錯誤,故符合題意.B、對于直線y=bx+a來說,由圖象可以判斷,a<0,b<0;而對于拋物線來說,圖象應(yīng)開口向下,故不合題意,圖形錯誤,故符合題意.C、對于直線y=bx+a來說,由圖象可以判斷,a<0,b>0;而對于拋物線來說,圖象開口向下,對稱軸x=位于y軸的右側(cè),圖形正確,故不符合題意,D、對于直線y=bx+a來說,由圖象可以判斷,a>0,b>0;而對于拋物線來說,圖象開口向下,a<0,故不合題意,圖形錯誤,故符合題意.故選ABD.【考點】主要考查了一次函數(shù)、二次函數(shù)圖象的性質(zhì)及其應(yīng)用問題;解題的方法是首先根據(jù)其中一次函數(shù)圖象確定a、b的符號,進而判斷另一個函數(shù)的圖象是否符合題意;解題的關(guān)鍵是靈活運用一次函數(shù)、二次函數(shù)圖象的性質(zhì)來分析、判斷、解答.2、ABCD【解析】【分析】根據(jù)方程、方程的解的有關(guān)定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關(guān)鍵.3、AD【解析】【分析】根據(jù)圓的有關(guān)概念及性質(zhì),對選項逐個判斷即可.【詳解】解:A.等弧是能夠完全重合的弧,因此等弧所對的圓心角相等,正確,符合題意;B.經(jīng)過不在同一直線上的三點可以作一個圓,故原命題錯誤,不符合題意;C.平分弦(不是直徑)的直徑垂直于這條弦,故原命題錯誤,不符合題意;D.圓的內(nèi)接平行四邊形是矩形,正確,符合題意,正確的有A、D,故答案為:A、D.【考點】此題考查了圓的有關(guān)概念及性質(zhì),解題的關(guān)鍵是熟練掌握圓的相關(guān)概念以及性質(zhì).4、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關(guān)系確定此種情況存在,再利用根與系數(shù)的關(guān)系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數(shù)的關(guān)系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數(shù)的關(guān)系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關(guān)鍵.5、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標結(jié)合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質(zhì).解題的關(guān)鍵在于根據(jù)表格獲取正確的信息.三、填空題1、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標,從而可證OM是△ABD的中位線,得到,則當BD最小時,OM也最小,即當B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標為(2,2),圓C與x軸相切于點A,∴點A的坐標為(2,0),∴OA=OD=2,即O是AD的中點,又∵M是AB的中點,∴OM是△ABD的中位線,∴,∴當BD最小時,OM也最小,∴當B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.2、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點在理解題意和利用內(nèi)切圓半徑求解面積;3、﹣3<x<1【解析】【分析】根據(jù)拋物線與x軸的一個交點坐標和對稱軸,由拋物線的對稱性可求拋物線與x軸的另一個交點,再根據(jù)拋物線的增減性可求當y<0時,x的取值范圍.【詳解】解:∵拋物線y=ax2+bx+c(a≠0)與x軸的一個交點為(﹣3,0),對稱軸為x=﹣1,∴拋物線與x軸的另一個交點為(1,0),由圖象可知,當y<0時,x的取值范圍是﹣3<x<1.故答案為:﹣3<x<1.【考點】本題考查了二次函數(shù)的性質(zhì)和數(shù)形結(jié)合能力,熟練掌握并靈活運用是解題的關(guān)鍵.4、在⊙A上【分析】先根據(jù)兩點間的距離公式計算出OA,然后根據(jù)點與圓的位置關(guān)系的判定方法判斷點O與⊙A的位置關(guān)系.【詳解】解:∵點A的坐標為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關(guān)系:點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,當點P在圓外?d>r;當點P在圓上?d=r;當點P在圓內(nèi)?d<r.5、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.四、簡答題1、4m【解析】【分析】首先根據(jù)DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△ABF∽△COF,可得,然后代入數(shù)值可得方程,解出方程即可得到答案.【詳解】解:延長OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,設(shè)AB=EB=xm,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴,,解得:x=4.經(jīng)檢驗:x=4是原方程的解.答:圍墻AB的高度是4m.【考點】此題主要考查了相似三角形的應(yīng)用,解決問題的關(guān)鍵是求出AB=BE,根據(jù)相似三角形的判定方法證明△ABF∽△COF.2、(1),;(2);(3);(4)或.【解析】【分析】(1)根據(jù)P點的運動速度和BD的長度即可出結(jié)果;(2)畫出圖象,根據(jù)三角形的相似求出各個線段長,即可解決;(3)分情況討論,矩形與重疊部分面積即為矩形面積減去△ABC外部的小三角形面積,通過三角函數(shù)計算出各邊長求面積即可;(4)要想使被直線分割成的兩部分能拼成不重疊且無縫隙的圖形恰好是三角形,則需要被分割的是兩個至少有一條相等邊長的直角三角形,或者直線正好過正方形一條邊的中點,分情況畫圖求解即可.【詳解】解:(1)∵,為的中點,∴,P從B運動到點D所需時間為1s,由題意可知,;(2)如圖所示,由題意得,∴,∵,,,∴,∴,由四邊形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)當時,如圖,DM交BC于點F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此時,∴,∴,解得,,同理,,解得,,,當時,如圖,DM交BC于點F,QM交BC于E,,由題意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,綜上所述:;(4)如圖所示,當Q與C重合時,滿足條件,由前面解題過程可知此時,當PQ=DM時,此時直線CD正好過QM的中點,滿足條件,此時,當直線CD正好過PQ的中點G時,滿足條件,如圖,由前面計算可知,則,,解得,綜上所述,或.【考點】本題考查了動點問題,熟練掌握三角函數(shù),矩形的性質(zhì)是解題的關(guān)鍵.五、解答題1、邊長為,邊心距為【分析】過點O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內(nèi)接正方形ABCD的邊長為,邊心距為.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),以及勾股定理,正多邊形各邊所對的外接圓的圓心角都相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論