版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省儀征市中考數(shù)學(xué)每日一練試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨2、如圖,五邊形是⊙O的內(nèi)接正五邊形,則的度數(shù)為(
)A. B. C. D.3、用配方法解方程時,原方程應(yīng)變形為(
)A. B. C. D.4、已知⊙O的半徑為4,,則點A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定5、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,的內(nèi)切圓(圓心為點O)與各邊分別相切于點D,E,F(xiàn),連接.以點B為圓心,以適當(dāng)長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線.下列說法正確的是(
)A.射線一定過點O B.點O是三條中線的交點C.若是等邊三角形,則 D.點O不是三條邊的垂直平分線的交點2、下面一元二次方程的解法中,不正確的是(
)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=13、下列命題正確的是(
)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦4、下列圖形中,是中心對稱圖形的是(
)A. B.C. D.5、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(
)A. B.和是方程的兩個根C. D.(s取任意實數(shù))第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若二次函數(shù)的頂點在x軸上,則__________.2、已知拋物線與x軸的一個交點為,則代數(shù)式的值為______.3、如圖,拋物線y=﹣x2+x+2與x軸相交于A、B兩點,與y軸相交于點C,點D在拋物線上,且CD∥AB.AD與y軸相交于點E,過點E的直線PQ平行于x軸,與拋物線相交于P,Q兩點,則線段PQ的長為_____.4、已知二次函數(shù),當(dāng)分別取時,函數(shù)值相等,則當(dāng)取時,函數(shù)值為______.5、已知關(guān)于的一元二次方程,有下列結(jié)論:①當(dāng)時,方程有兩個不相等的實根;②當(dāng)時,方程不可能有兩個異號的實根;③當(dāng)時,方程的兩個實根不可能都小于1;④當(dāng)時,方程的兩個實根一個大于3,另一個小于3.以上4個結(jié)論中,正確的個數(shù)為_________.四、簡答題(2小題,每小題10分,共計20分)1、據(jù)說,在距今2500多年前,古希臘數(shù)學(xué)家就已經(jīng)較準確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設(shè)AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點B在正方形的中心,BC與金字塔底部一邊垂直于點K,與此同時,直立地面上的一根標桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結(jié)果均保留四個有效數(shù)字)2、如圖,拋物線與軸交于兩點,與軸交于點,且,.(1)求拋物線的表達式;(2)點是拋物線上一點.①在拋物線的對稱軸上,求作一點,使得的周長最小,并寫出點的坐標;②連接并延長,過拋物線上一點(點不與點重合)作軸,垂足為,與射線交于點,是否存在這樣的點,使得,若存在,求出點的坐標;若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、如圖,在中,AB是直徑,弦EF∥AB.(1)請僅用無刻度的直尺畫出劣弧EF的中點P;(保留作圖痕跡,不寫作法)(2)在(1)的條件下,連接OP交EF于點Q,,,求PQ的長度.2、元元同學(xué)在數(shù)學(xué)課上遇到這樣一個問題:如圖1,在平面直角坐標系xOy中,OA經(jīng)過坐標原點O,并與兩坐標軸分別交于B、C兩點,點B的坐標為,點D在上,且,求OA的半徑和圓心A的坐標.元元的做法如下,請你幫忙補全解題過程:解:如圖2,連接BC.作AELOB于E、AF⊥OC于F.∴、(依據(jù)是①)∵,∴(依據(jù)是②).∵,.∴BC是的直徑(依據(jù)是③).∴∵,∴A的坐標為(④)的半徑為⑤3、在正方形ABCD中,過點B作直線l,點E在直線l上,連接CE,DE,其中,過點C作于點F,交直線l于點H.(1)當(dāng)直線l在如圖①的位置時①請直接寫出與之間的數(shù)量關(guān)系______.②請直接寫出線段BH,EH,CH之間的數(shù)量關(guān)系______.(2)當(dāng)直線l在如圖②的位置時,請寫出線段BH,EH,CH之間的數(shù)量關(guān)系并證明;(3)已知,在直線l旋轉(zhuǎn)過程中當(dāng)時,請直接寫出EH的長.4、如圖,已知弓形的長,弓高,(,并經(jīng)過圓心O).(1)請利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長.-參考答案-一、單選題1、A【分析】隨機事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機事件的概念是解題的關(guān)鍵.2、D【解析】【分析】先根據(jù)正五邊形的內(nèi)角和求出每個內(nèi)角,再根據(jù)等邊對等角得出∠ABE=∠AEB,然后利用三角形內(nèi)角和求出∠ABE=即可.【詳解】解:∵五邊形是⊙O的內(nèi)接正五邊形,∴∠A=∠ABC=,AB=AE,∴∠ABE=∠AEB,∴∠ABE=,∴.故選:D.【考點】本題考查圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算,掌握圓內(nèi)接正五邊形的性質(zhì),等腰三角形性質(zhì),三角形內(nèi)角和公式,角的和差計算是解題關(guān)鍵.3、D【解析】【分析】移項,配方,變形后即可得出選項.【詳解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故選:D.【考點】本題考查了解一元二次方程,能夠正確配方是解此題的關(guān)鍵.4、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關(guān)系,點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內(nèi)?d<r.5、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.二、多選題1、AC【解析】【分析】根據(jù)三角形內(nèi)切圓的性質(zhì)逐個判斷可得出答案.【詳解】A、以點B為圓心,以適當(dāng)長為半徑作弧分別交于G,H兩點;分別以點G,H為圓心,以大于的長為半徑作弧,兩條弧交于點P;作射線,由此可得BP是角平分線,所以射線一定過點O,說法正確,選項符合題意;B、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;C、當(dāng)是等邊三角形時,可以證得D、F、E分別是邊的中點,根據(jù)中位線概念可得,選項符合題意;D、邊DE、EF、DF分別是圓的弦長,所以點O是△DEF三條邊的垂直平分線的交點,選項不符合題意;故選:AC.【考點】本題考查了三角形內(nèi)切圓的特點和性質(zhì),解題的關(guān)鍵是能與其它知識聯(lián)系起來,加以證明選項的正確.2、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.3、ABD【解析】【分析】根據(jù)垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關(guān)鍵.4、BD【解析】【分析】根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,進而判斷得出答案.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不符合題意;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,故此選項不合題意;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,故此選項符合題意.故選:BD.【考點】本題考查的是中心對稱圖形的概念,把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.5、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應(yīng)的判斷.【詳解】解:由表格數(shù)據(jù)可知,當(dāng)時,,將點代入中,可得.由表格數(shù)據(jù)可知,當(dāng)時,;當(dāng)時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應(yīng)的函數(shù)值相等,∵時,對應(yīng)函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.三、填空題1、-2或【解析】【分析】根據(jù)二次函數(shù)一般式的頂點坐標公式表示出頂點,再根據(jù)頂點在x軸上,建立等量關(guān)系求解即可.【詳解】解:的頂點坐標為:∵頂點在x軸上∴解得:故答案為:或【考點】本題考查二次函數(shù)一般式的頂點坐標,掌握二次函數(shù)一般式的頂點坐標公式是解題關(guān)鍵.2、2019【解析】【分析】先將點(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數(shù)圖象上點的坐標特征及求代數(shù)式的值,解題的關(guān)鍵是將點(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.3、2【解析】【分析】利用二次函數(shù)圖象上點的坐標特征可求出點A,B,C,D的坐標,由點A,D的坐標,利用待定系數(shù)法可求出直線AD的解析式,利用一次函數(shù)圖象上點的坐標特征可求出點E的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出點P,Q的坐標,進而可求出線段PQ的長.【詳解】解:當(dāng)y=0時,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴點A的坐標為(﹣2,0);當(dāng)x=0時,y=﹣x2+x+2=2,∴點C的坐標為(0,2);當(dāng)y=2時,﹣x2+x+2=2,解得:x1=0,x2=2,∴點D的坐標為(2,2).設(shè)直線AD的解析式為y=kx+b(k≠0),將A(﹣2,0),D(2,2)代入y=kx+b,得:解得:∴直線AD的解析式為y=x+1.當(dāng)x=0時,y=x+1=1,∴點E的坐標為(0,1).當(dāng)y=1時,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴點P的坐標為(1﹣,1),點Q的坐標為(1+,1),∴PQ=1+﹣(1﹣)=2.故答案為:2.【考點】本題考查了拋物線與x軸的交點、二次函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,利用二次函數(shù)圖象上點的坐標特征求出點P,Q的坐標是解題的關(guān)鍵.4、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關(guān)系,從而可以得到2x1+2x2的值,進而可以求得當(dāng)x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當(dāng)x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.5、①③④【解析】【分析】由根的判別式,根與系數(shù)的關(guān)系進行判斷,即可得到答案.【詳解】解:根據(jù)題意,∵一元二次方程,∴;∴當(dāng),即時,方程有兩個不相等的實根;故①正確;當(dāng),解得:,方程有兩個同號的實數(shù)根,則當(dāng)時,方程可能有兩個異號的實根;故②錯誤;拋物線的對稱軸為:,則當(dāng)時,方程的兩個實根不可能都小于1;故③正確;由,則,解得:或;故④正確;∴正確的結(jié)論有①③④;故答案為:①③④.【考點】本題考查了二次函數(shù)的性質(zhì),一元二次方程根的判別式,根與系數(shù)的關(guān)系,解題的關(guān)鍵是掌握所學(xué)的知識進行解題.四、簡答題1、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據(jù)同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據(jù)同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點】本題考查了相似三角形的應(yīng)用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關(guān)鍵是找到各部分以及與其對應(yīng)的影長.2、(1);(2)①連接交拋物線對稱軸于點,則點即為所求,點的坐標為;②存在;點的坐標為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點式.(2)①因為關(guān)于對稱軸對稱,所以,由兩點之間線段最短,知連接交拋物線對稱軸于點,則點即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點坐標.②設(shè)點,根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標,分當(dāng)在上方、下方兩種情況,列關(guān)于m的方程,解出并取大于-2的解,即可寫出的坐標.【詳解】(1)∵,,結(jié)合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達式為;(2)①∵關(guān)于對稱軸對稱,∴,∴連接交拋物線對稱軸于點,則點即為所求.將點,的坐標代入一次函數(shù)表達式,得直線的函數(shù)表達式為.拋物線的對稱軸為直線,當(dāng)時,,故點的坐標為;②存在;設(shè)點,則,.當(dāng)在上方時,,,,解得(舍)或;當(dāng)在下方時,,,,解得(舍)或,綜上所述,的值為或5,點的坐標為或.【考點】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎(chǔ),動點問題中分類討論與數(shù)形結(jié)合轉(zhuǎn)化為方程問題是解題的關(guān)鍵.五、解答題1、(1)見解析(2)1【分析】(1)如圖,連接BE,AF,BE交AF于C,作直線OC交于點P,點P即為所求.(2)利用垂徑定理結(jié)合勾股定理求得OQ=4,進一步計算即可求解.(1)解:如圖中,點P即為所求.(2)解:連接OF,由作圖知OP⊥EF,EQ=QF=EF=3,∵AB=10,∴OF=OP=AB=5,∴OQ==4,∴PQ=OP-OQ=1,∴PQ的長度為1.【點睛】本題考查了作圖-應(yīng)用與設(shè)計,垂徑定理,勾股定理,,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.2、垂徑定理,圓周角定理,圓周角定理,(1,),2【分析】根據(jù)垂徑定理,圓周角定理依次分析解答.【詳解】解:如圖2,連接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依據(jù)是垂徑定理)∵,∴(依據(jù)是圓周角定理).∵,.∴BC是的直徑(依據(jù)是圓周角定理).∴,∵,∴A的坐標為(1,),的半徑為2,故答案為:垂徑定理,圓周角定理,圓周角定理,(1,),2.【點睛】此題考查了圓的知識,垂徑定理、圓周角定理,熟記各定理知識并綜合應(yīng)用是解題的關(guān)鍵.3、(1)①;②;(2);證明見解析;(3)或.【分析】(1)①,根據(jù)CE=BC,四邊形ABCD為正方形,可得BC=CD=CE,根據(jù)CF⊥DE,得出CF平分∠ECD即可;②,過點C作CG⊥BE于G,根據(jù)BC=EC,得出∠ECG=∠BCG=,根據(jù)∠ECH=∠HCD=,可得CG=HG,根據(jù)勾股定理在Rt△GHC中,,根據(jù)GE=,得出即可;(2),過點C作交BE于點M,得出,先證得出,可證是等腰直角三角形,可得即可;(3)或,根據(jù),分兩種情況,當(dāng)∠ABE=90°-15°=75°時,BC=CE,先證△CDE為等邊三角形,可求∠FEH=∠DEC=∠CEB=60°-15°=45°,根據(jù)CF⊥DE,得出DF=EF=1,∠FHE=180°-∠HFE-∠FEH=45°,根據(jù)勾股定理HE=,當(dāng)∠ABE=90°+15°=105°,可得BC=CE得出∠CBE=∠CEB=15°,可求∠FCE=,∠FEC=180°-∠CFE-∠FCE=30°,根據(jù)30°直角三角形先證得出CF=,根據(jù)勾股定理EF=,再證FH=FE,得出EH=即可.【詳解】解:(1)①∵CE=BC,四邊形ABCD為正方形,∴BC=CD=CE,∵CF⊥DE,∴CF平分∠ECD,∴∠ECH=∠HCD,故答案為:∠ECH=∠HCD;②,過點C作CG⊥BE于G,∵BC=EC,∴∠ECG=∠BCG=,∵∠ECH=∠HCD=,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年度1月陜西西安市胸科醫(yī)院編制外聘用人員招聘1人筆試模擬試題及答案解析
- 2026年招聘北京經(jīng)濟技術(shù)開發(fā)區(qū)第一小學(xué)公開招聘事業(yè)單位工作人員備考題庫完整答案詳解
- 2026年浙大兒院勞務(wù)派遣科研助理招聘備考題庫(徐曉軍課題組)及參考答案詳解
- 2026年深圳市兒童醫(yī)院中醫(yī)科招聘心理評估師備考題庫(人)完整參考答案詳解
- 2026年通號工程局集團有限公司招聘備考題庫參考答案詳解
- 2026年陜煤化銅川康復(fù)醫(yī)院招聘啟示備考題庫及參考答案詳解1套
- 2026年深圳市羅湖區(qū)僑香實驗學(xué)校誠聘初中教學(xué)管理骨干(非行政崗)備考題庫及參考答案詳解
- 合肥經(jīng)開投資促進有限公司2025年公開招聘備考題庫及參考答案詳解一套
- 2026年湖北省黃麥嶺控股集團有限公司招聘備考題庫及答案詳解1套
- 2026年湖北工業(yè)職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試參考題庫帶答案解析
- 縮水機安全操作規(guī)程
- 顱內(nèi)壓波形分析
- 中國消化內(nèi)鏡內(nèi)痔診療指南及操作共識(2023年)
- 2023年高校教師資格證之高等教育學(xué)真題及答案
- dosm新人落地訓(xùn)練全流程課程第五步三次面談
- JJF 1798-2020隔聲測量室校準規(guī)范
- GB/T 29516-2013錳礦石水分含量測定
- 石湖礦綜采放頂煤可行性技術(shù)論證1
- DB11 1505-2022 城市綜合管廊工程設(shè)計規(guī)范
- 佛山市順德區(qū)飛鵝永久墓園管理處招考2名管理員工(全考點)模擬卷
- 2020新版?zhèn)€人征信報告模板
評論
0/150
提交評論