2023江西省樂平市中考數(shù)學及參考答案詳解【典型題】_第1頁
2023江西省樂平市中考數(shù)學及參考答案詳解【典型題】_第2頁
2023江西省樂平市中考數(shù)學及參考答案詳解【典型題】_第3頁
2023江西省樂平市中考數(shù)學及參考答案詳解【典型題】_第4頁
2023江西省樂平市中考數(shù)學及參考答案詳解【典型題】_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江西省樂平市中考數(shù)學考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下面四個立體圖形中,從正面看是三角形的是()A. B. C. D.2、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機事件3、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o4、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(

)A.π B.π C.π D.25、函數(shù)y=ax與y=ax2+a(a≠0)在同一直角坐標系中的大致圖象可能是()A. B.C. D.二、多選題(5小題,每小題3分,共計15分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結論中正確的是(

)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3、下列說法正確的是(

)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧4、如圖所示,二次函數(shù)的圖象的一部分,圖像與x軸交于點.下列結論中正確的是(

)A.拋物線與x軸的另一個交點坐標是B.C.若拋物線經(jīng)過點,則關于x的一元二次方程的兩根分別為,5D.將拋物線向左平移3個單位,則新拋物線的表達式為5、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論正確的有()A.2a+b<0 B.a(chǎn)bc>0 C.4a﹣2b+c>0 D.a(chǎn)+c>0第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在中,,分別以、、邊為直徑作半圓,圖中陰影部分在數(shù)學史上稱為“希波克拉底月牙”.當,時,則陰影部分的面積為__________.2、一個直角三角形的斜邊長cm,兩條直角邊長的和是6cm,則這個直角三角形外接圓的半徑為______cm,直角三角形的面積是________.3、邊長相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標系內(nèi)的位置如圖所示,,點B在原點,把六邊形ABCDEF沿x軸正半軸繞頂點按順時針方向,從點B開始逐次連續(xù)旋轉,每次旋轉60°,經(jīng)過2021次旋轉之后,點B的坐標是_____________.4、半徑為6cm的扇形的圓心角所對的弧長為cm,這個圓心角______度.5、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關系式是____________,自變量x的取值范圍是____________.四、簡答題(2小題,每小題10分,共計20分)1、如圖,二次函數(shù)的圖象交軸于、兩點,交軸于點,點的坐標為,頂點的坐標為.求二次函數(shù)的解析式和直線的解析式;點是直線上的一個動點,過點作軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;在拋物線上是否存在異于、的點,使中邊上的高為?若存在求出點的坐標;若不存在請說明理由.2、(1)閱讀理解如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結論:AE+BG=2CF,CF>DF,由此得出一個關于,,之間數(shù)量關系的命題:若,則______.(2)證明命題小東認為:可以通過“若,則”的思路證明上述命題.小晴認為:可以通過“若,,且,則”的思路證明上述命題.請你選擇一種方法證明(1)中的命題.五、解答題(4小題,每小題10分,共計40分)1、已知關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個實數(shù)根都為正整數(shù),求這個方程的根.2、如圖,在直角坐標系中,將△ABC繞點A順時針旋轉90°.(1)畫出旋轉后的△AB1C1,并寫出B1、C1的坐標;(2)求線段AB在旋轉過程中掃過的面積.3、如圖,是由若干個完全相同的小正方體組成的一個幾何體.從左面、上面觀察如圖所示的幾何體,分別畫出你所看到的平面圖形.4、2022年冬奧會即將在北京召開,某網(wǎng)絡經(jīng)銷商購進了一批以冬奧會為主題的文化衫進行銷售,文化衫的進價為每件30元,當銷售單價定為70元時,每天可售出20件,每銷售一件需繳納網(wǎng)絡平臺管理費2元,為了擴大銷售,增加盈利,決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn):銷售單價每降低1元,則每天可多售出2件(銷售單價不低于進價),若設這款文化衫的銷售單價為x(元),每天的銷售量為y(件).(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式;(2)當銷售單價為多少元時,銷售這款文化衫每天所獲得的利潤最大,最大利潤為多少元?-參考答案-一、單選題1、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長方形,不符合題意.故選:C.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.2、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.4、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以OC為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以OC為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質(zhì),勾股定理,正方形的判定與性質(zhì),圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.5、D【解析】【分析】先根據(jù)一次函數(shù)的性質(zhì)確定a>0與a<0兩種情況分類討論拋物線的頂點位置即可得出結論.【詳解】解:函數(shù)y=ax與y=ax2+a(a≠0)A.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當頂點坐標為(0,a),應交于y軸負半軸,而不是交y軸正半軸,故選項A不正確;

B.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當頂點坐標為(0,a),應交于y軸負半軸,而不是在坐標原點上,故選項B不正確;

C.函數(shù)y=ax圖形可得a>0,則y=ax2+a(a≠0)開口方向向上正確,當頂點坐標為(0,a),應交于y軸正半軸,故選項C不正確;

D.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向上正確,當頂點坐標為(0,a),應交于y軸正半軸正確,故選項D正確;

故選D.【考點】本題考查的知識點是一次函數(shù)的圖象與二次函數(shù)的圖象,理解掌握函數(shù)圖象的性質(zhì)是解此題的關鍵.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關鍵.2、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關鍵是熟記其概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.3、ABD【解析】【分析】根據(jù)圓的相關知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎題.4、ABD【解析】【分析】結合圖象,根據(jù)二次函數(shù)的性質(zhì)進行判斷即可求解【詳解】∵拋物線開口向下,∴a<0,將(-1,0)代入拋物線方程,可得:4a+k=0,∵4a+k=0,∴k=-4a,∴k+a=-3a,∵a<0,∴k+a=-3a>0,即B選項正確;將k=-4a代入拋物線方程,可得:拋物線方程為:,當y=0時,方程的根為-1和3,∴拋物線與x軸的另一個交點為(3,0),即A項正確;將點(-3,m)代入到拋物線方程,可得m=12a,∵結合k=-4a,∴方程,化簡為:,∵a<0,∴,即,顯然方程無實數(shù)解,故C項說法錯誤;向左平移3個單位,依據(jù)左加右減原則,可得新拋物線為:,即D說法正確,故選:ABD.【考點】本題考查了拋物線的性質(zhì)與圖象的知識,解答本題時需注重運用數(shù)形結合的思想.5、AD【解析】【分析】結合圖象,根據(jù)函數(shù)的開口方向、與y軸的交點、對稱軸的位置、和當x=-2時,x=-1時,對應y值的大小依次可判斷.【詳解】解:根據(jù)開口方向可知,根據(jù)圖象與y軸的交點可知,根據(jù)對稱軸可知:,∴,∴,,故A選項正確;∴abc<0,故B選項錯誤;根據(jù)圖象可知,當x=-2時,,故C選項錯誤;根據(jù)圖象可知,當x=-1時,,∴,故D選項正確.故選:AD.【考點】本題考查了二次函數(shù)圖象判定式子的正負.二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點確定,注意特殊點的函數(shù)值.三、填空題1、【分析】根據(jù)陰影部分面積等于以為直徑的2個半圓的面積加上減去為半徑的半圓面積即.【詳解】解:在中,,,.故答案為:【點睛】本題考查了勾股定理,求扇形面積,直徑所對的圓周角是直角,掌握圓周角定理是解題的關鍵.2、4【分析】設一直角邊長為x,另一直角邊長為(6-x)根據(jù)勾股定理,解一元二次方程求出,根據(jù)這個直角三角形的斜邊長為外接圓的直徑,可求外接圓的半徑為cm,利用三角形面積公式求即可.【詳解】解:設一直角邊長為x,另一直角邊長為(6-x),∵三角形是直角三角形,∴根據(jù)勾股定理,整理得:,解得,這個直角三角形的斜邊長為外接圓的直徑,∴外接圓的半徑為cm,三角形面積為.故答案為;.【點睛】本題考查直角三角形的外接圓,直角所對弦性質(zhì),勾股定理,一元二次方程,三角形面積,掌握以上知識是解題關鍵.3、【分析】根據(jù)旋轉找出規(guī)律后再確定坐標.【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,∴每6次翻轉為一個循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉為第337循環(huán)組的第5次翻轉,點B在開始時點C的位置,∵,∴,∴翻轉前進的距離為:,如圖,過點B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點B的坐標為.故答案為:.【點睛】題考查旋轉的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關鍵.4、60【分析】根據(jù)弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點睛】本題考查了弧長公式,靈活應用弧長公式是解題的關鍵.5、

S=-3x2+24x

≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.四、簡答題1、;有最大值;存在滿足條件的點,其坐標為或【解析】【分析】可設拋物線解析式為頂點式,由點坐標可求得拋物線的解析式,則可求得點坐標,利用待定系數(shù)法可求得直線解析式;設出點坐標,從而可表示出的長度,利用二次函數(shù)的性質(zhì)可求得其最大值;過作軸,交于點,過和于,可設出點坐標,表示出的長度,由條件可證得為等腰直角三角形,則可得到關于點坐標的方程,可求得點坐標.【詳解】解:拋物線的頂點的坐標為,可設拋物線解析式為,點在該拋物線的圖象上,,解得,拋物線解析式為,即,點在軸上,令可得,點坐標為,可設直線解析式為,把點坐標代入可得,解得,直線解析式為;設點橫坐標為,則,,,當時,有最大值;如圖,過作軸交于點,交軸于點,作于,設,則,,是等腰直角三角形,,,當中邊上的高為時,即,,,當時,,方程無實數(shù)根,當時,解得或,或,綜上可知存在滿足條件的點,其坐標為或.【考點】本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法、二次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)及方程思想等知識.在中主要是待定系數(shù)法的考查,注意拋物線頂點式的應用,在中用點坐標表示出的長是解題的關鍵,在中構造等腰直角三角形求得的長是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.2、(1);(2)證明見解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點】本題考查反比例函數(shù)圖形上的點的坐標特征,反比例函數(shù)的圖象等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.五、解答題1、證明見祥

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論