版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省西昌市中考數(shù)學考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨2、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關系的是()A. B.C. D.3、下列事件中,是必然事件的是()A.實心鐵球投入水中會沉入水底B.車輛隨機到達一個路口,遇到紅燈C.打開電視,正在播放《大國工匠》D.拋擲一枚硬幣,正面向上4、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.5、二次函數(shù)的頂點坐標為,圖象如圖所示,有下列四個結論:①;②;③④,其中結論正確的個數(shù)為(
)A.個 B.個 C.個 D.個二、多選題(5小題,每小題3分,共計15分)1、如圖,在的網格中,點,,,,均在網格的格點上,下面結論正確的有(
)A.點是的外心 B.點是的外心C.點是的外心 D.點是的外心2、如圖,如果AB為⊙O的直徑,弦CD⊥AE,垂足為E,那么下列結論中,正確的是(
)A. B.弧BC=弧BD C.∠BAC=∠BAD D.AC>AD3、下列命題中,不正確的是(
)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內部或外部4、如圖,二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結論正確的是(
)A.a+b+c<0B.abc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<45、下列各數(shù)不是方程解的是(
)A.6 B.2 C.4 D.0第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、兩直角邊分別為6、8,那么的內接圓的半徑為____________.2、如圖,四邊形內接于,若,則_______°.3、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.4、在平面直角坐標系中,二次函數(shù)過點(4,3),若當0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.5、一個盒子中裝有標號為,,,的四個小球,這些球除標號外都相同,從中隨機摸出兩個小球,則摸出的小球標號之和大于的概率為______.四、簡答題(2小題,每小題10分,共計20分)1、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.2、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點D在線段AC上,且∠CBD=∠BAC.作法:①以點A為圓心,AB長為半徑畫圓;②以點C為圓心,BC長為半徑畫弧,交⊙A于點P(不與點B重合);③連接BP交AC于點D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點C在⊙A上.∵點P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據)∵BC=PC,∴∠CBD=.()(填推理的依據)∴∠CBD=∠BAC.五、解答題(4小題,每小題10分,共計40分)1、用適當?shù)姆椒ń夥匠蹋?1)(1-x)2-2(x-1)-35=0;(2)x2+4x-2=0.2、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?3、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.4、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉點M,以B為中心逆時針旋轉點N,旋轉角分別為和.若旋轉后M、N兩點重合成一點C(即構成),設.(1)的周長為_______;(2)若,求x的值.-參考答案-一、單選題1、A【分析】隨機事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據隨機事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機事件的概念是解題的關鍵.2、A【分析】設正六邊形的邊長為1,當在上時,過作于而求解此時的函數(shù)解析式,當在上時,延長交于點過作于并求解此時的函數(shù)解析式,當在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應用,正多邊形的性質,清晰的分類討論是解本題的關鍵.3、A【分析】根據必然事件、不可能事件、隨機事件的概念進行判斷即可.【詳解】解:A、實心鐵球投入水中會沉入水底,是必然事件,該選項符合題意;B、車輛隨機到達一個路口,遇到紅燈,是隨機事件,該選項不合題意;C、打開電視,正在播放《大國工匠》,是隨機事件,該選項不合題意;D、拋擲一枚硬幣,正面向上,是隨機事件,該選項不合題意;故選:A.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、B【分析】根據“把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關鍵.5、A【解析】【分析】根據二次函數(shù)的性質和已知條件,對每一項逐一進行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設成立,結合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,結合圖象,運用所學知識是解題關鍵.二、多選題1、ABCD【解析】【分析】連接HB、HD,利用勾股定理可得,則根據三角形外心的定義可對四個選項進行判斷.【詳解】解:如圖,連接HB、HD,根據勾股定理可得:,點是的外心,點是的外心,點是的外心,點是的外心,∴ABCD都是正確的.故選:ABCD.【考點】本題考查了三角形的外心和勾股定理的應用,熟練掌握三角形的外心到三角形的三個頂點的距離相等是解決本題的關鍵.2、ABC【解析】【分析】根據垂徑定理逐個判斷即可.【詳解】解:AB為⊙O的直徑,弦CD⊥AB垂足為E,則AB是垂直于弦CD的直徑,就滿足垂徑定理,因而CE=DE,弧BC=弧BD,∠BAC=∠BAD都是正確的.根據條件可以得到AB是CD的垂直平分線,因而AC=AD.所以D是錯誤的.故選:ABC.【考點】本題主要考查的是對垂徑定理的記憶與理解,做題的關鍵是掌握垂徑定理的應用.3、ABD【解析】【分析】根據圓的性質定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關鍵.4、ABD【解析】【分析】根據題意可得點A(﹣4,0)關于對稱軸的對稱點,從而得到當時,,再由,可得在對稱軸右側隨的增大而增大,從而得到當時,;根據圖象可得,,可得;再由,可得;然后根據P(﹣6,y1)關于對稱軸的對稱點,可得當y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關于對稱軸的對稱點,即當時,,∵拋物線開口向上,∴,∴在對稱軸右側隨的增大而增大,∴當時,,故A正確;∵拋物線與交于負半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關于對稱軸的對稱點,∴當y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質,熟練掌握二次函數(shù)的圖象和性質,并利用數(shù)形結合思想解答是解題的關鍵.5、ACD【解析】【分析】分別把四個選項中的數(shù)代入方程,看方程兩邊是否相等即可求解.【詳解】解:A、將6代入得:,故6不是方程解,符合題意;B、將2代入得:,故2是方程解,不符合題意;C、將4代入得:,故4不是方程解,符合題意;D、將0代入得:,故0不是方程解,符合題意;故選:ACD.【考點】此題考查了一元二次方程解得含義,解題的關鍵是熟練掌握一元二次方程解得含義.三、填空題1、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.2、104【解析】【分析】根據圓內接四邊形的對角互補列式計算即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點】本題考查的是圓內接四邊形的性質,掌握圓內接四邊形的對角互補是解題的關鍵.3、5【分析】先根據垂徑定理求出AC的長,設⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.4、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據二次函數(shù)的性質以及二次函數(shù)圖象上點的坐標特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標特征,熟練掌握二次函數(shù)的性質是解題的關鍵.5、【分析】根據題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據概率公式即可得出答案.【詳解】解:根據題意畫圖如下:共有12種等可能的情況數(shù),其中摸出的小球標號之和大于5的有4種,則摸出的小球標號之和大于5的概率為.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.四、簡答題1、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標轉換為線段長度,幾何圖形與二次函數(shù)結合的問題,最后一問推出CG=HG為解題關鍵.2、(1)見解析;(2)圓周角定理;,圓周角定理的推論【解析】【分析】(1)利用幾何語言畫出對應的幾何圖形;(2)先根據圓周角定理得到,再利用等腰三角形的性質得到,從而得到.【詳解】解:(1)如圖,為所作;(2)證明:連接,如圖,,點在上.點在上,(圓周角定理),,(圓周角定理的推論).故答案為:圓周角定理;;圓周角定理的推論.【考點】本題考查了作圖復雜作圖、也考查了圓周角定理,解題的關鍵是掌握復雜作圖的五種基本作圖的基本方法,一般是結合了幾何圖形的性質和基本作圖方法.熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.五、解答題1、(1)x1=8,x2=-4(2)x1=-2,x2=--2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移項,而后配方,等號左右斗毆配上一次項系數(shù)一半的平方.(1)原方程可變形為(x-1-7)(x-1+5)=0,x-8=0或x+4=0,∴x1=8,x2=-4;(2)移項,得x2+4x=2,配方,得x2+4x+4=6,即(x+2)2=6,兩邊開平方,得x+2=±,∴x1=-2,x2=--2.【考點】本題考查了用適當方法解一元二次方程,解決問題的關鍵是先考慮直接開平方法分解因式法,而后再考慮配方法或公式法.2、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (新教材)2026年滬科版八年級下冊數(shù)學 18.1 勾股定理 課件
- 崇義中學高一下學期第一次月考數(shù)學試題
- DB5107-T 137.1-2023 國家食品安全示范城市細胞工程建設規(guī)范 第1部分:食品生產行業(yè)典范企業(yè)
- 2025年辦公樓宇屋面防水協(xié)議
- 切割設備維護保養(yǎng)規(guī)范
- 基因編輯抗性機制
- 2025年AI心理咨詢的情感分析工具開發(fā) 共情對話技術支撐
- 2025年容錯糾錯機制建設研究
- 2025年高考化學有機推斷題真題深度剖析
- 專題03智慧養(yǎng)老-沖刺2025年高考地理熱點梳理情境對點練
- 2025年黨員黨的基本理論應知應會知識100題及答案
- 《汽車發(fā)動機構造(雙語課程)》習題(按項目列出)
- 婚慶公司發(fā)布會策劃方案
- 松陵一中分班試卷及答案
- 《小米廣告宣傳冊》課件
- 勞務派遣公司工作方案
- 物理趣味題目試題及答案
- 華師大版數(shù)學七年級上冊《4.3 立體圖形的表面展開圖》聽評課記錄
- 2023-2024學年四川省成都市高二上學期期末調研考試地理試題(解析版)
- 陜西單招數(shù)學試題及答案
- 應收賬款債權轉讓協(xié)議
評論
0/150
提交評論