2022年四川省邛崍市中考數學能力檢測試卷含答案詳解(精練)_第1頁
2022年四川省邛崍市中考數學能力檢測試卷含答案詳解(精練)_第2頁
2022年四川省邛崍市中考數學能力檢測試卷含答案詳解(精練)_第3頁
2022年四川省邛崍市中考數學能力檢測試卷含答案詳解(精練)_第4頁
2022年四川省邛崍市中考數學能力檢測試卷含答案詳解(精練)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省邛崍市中考數學能力檢測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如果,那么的結果是(

)A. B. C. D.2、由二次函數,可知(

)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當x<3時,y隨x的增大而增大3、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉90°,得到,則點的坐標為(

).A. B.C. D.4、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.65、如圖,將一個棱長為3的正方體表面涂上顏色,把它分割成棱長為1的小正方體,將它們全部放入一個不透明盒子中搖勻,隨機取出一個小正方體,有三個面被涂色的概率為()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列命題不正確的是(

)A.三角形的內心到三角形三個頂點的距離相等B.三角形的內心不一定在三角形的內部C.等邊三角形的內心,外心重合D.一個圓一定有唯一一個外切三角形2、下列命題正確的是(

)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦3、古希臘數學家歐幾里得在《幾何原本》中記載了用尺規(guī)作某種六邊形的方法,其步驟是:①在⊙O上任取一點A,連接AO并延長交⊙O于點B;②以點B為圓心,BO為半徑作圓弧分別交⊙O于C,D兩點;③連接CO,DO并延長分別交⊙O于點E,F;④順次連接BC,CF,FA,AE,ED,DB,得到六邊形AFCBDE.連接AD,EF,交于點G,則下列結論正確的是.A.△AOE的內心與外心都是點G B.∠FGA=∠FOAC.點G是線段EF的三等分點 D.EF=AF4、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5、已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論正確的有()A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>0第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、某射擊運動員在同一條件下的射擊成績記錄如下:射擊次數20401002004001000“射中9環(huán)以上”的次數153378158321801“射中9環(huán)以下”的頻率通過計算頻率,估計這名運動員射擊一次時“射中9環(huán)以上”的概率是______(結果保留小數點后一位).2、若m,n是關于x的方程x2-3x-3=0的兩根,則代數式m2+n2-2mn=_____.3、定義:由a,b構造的二次函數叫做一次函數y=ax+b的“滋生函數”,一次函數y=ax+b叫做二次函數的“本源函數”(a,b為常數,且).若一次函數y=ax+b的“滋生函數”是,那么二次函數的“本源函數”是______.4、在平面直角坐標系中,將點繞坐標原點順時針旋轉后得到點Q,則點Q的坐標是___________.5、如圖,PA是⊙O的切線,A是切點.若∠APO=25°,則∠AOP=___________°.四、簡答題(2小題,每小題10分,共計20分)1、如圖,矩形在平面直角坐標系中,交軸于點,動點從原點出發(fā),以每秒1個單位長度的速度沿軸正方向移動,移動時間為秒,過點P作垂直于軸的直線,交于點M,交或于點N,直線掃過矩形的面積為.(1)求點的坐標;(2)求直線移動過程中到點之前的關于的函數關系式;(3)在直線移動過程中,第一象限的直線上是否存在一點,使是等腰直角三角形?若存在,直接寫出點的坐標;若不存在,說明理由2、某商場購進甲、乙兩種商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙兩種商品每箱各盈利多少元?(2)甲、乙兩種商品全部售完后,該商場又購進一批甲商品,在原每箱盈利不變的前提下,平均每天可賣出100箱.如調整價格,每降價1元,平均每天可以多賣出20箱,那么當降價多少元時,該商場利潤最大?最大利潤是多少?五、解答題(4小題,每小題10分,共計40分)1、解題與遐想.如圖,Rt△ABC的內切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數學劉老師:大家想一想,既然結果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)2、如圖,正方形ABCD是半徑為R的⊙O內接四邊形,R=6,求正方形ABCD的邊長和邊心距.3、如圖,AB是的直徑,CD是的一條弦,且于點E.(1)求證:;(2)若,,求的半徑.4、隨著信息技術的迅猛發(fā)展,人們去商場購物的支付方式更加多樣、便捷.某校數學興趣小組設計了一份調查問卷,要求每人選且只選一種最喜歡的支付方式.現將調查結果進行統計并繪制成如下兩幅不完整的統計圖.請結合圖中所給的信息解答下列問題:(1)這次活動共調查了______人,并補充完整條形統計圖;(2)在扇形統計圖中,表示“支付寶”支付的扇形圓心角的度數為______;(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種方式中選一種方式進行支付,請用畫樹狀圖或列表的方法,求出兩人恰好選擇同一種支付方式的概率.-參考答案-一、單選題1、B【解析】【分析】根據比例的性質即可得到結論.【詳解】∵=,∴可設a=2k,b=3k,∴==-.故選B.【考點】本題主要考查了比例的性質,解本題的要點根據題意可設a,b的值,從而求出答案.2、C【解析】【分析】根據二次函數的性質,直接根據的值得出開口方向,再利用頂點坐標的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數,可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數的性質,同學們應根據題意熟練地應用二次函數性質,這是中考中考查重點知識.3、A【解析】【分析】根據網格結構作出旋轉后的圖形,然后根據平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網格結構,作出圖形是解題的關鍵.4、B【分析】由切線的性質可推出,.再根據直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.5、B【分析】直接根據題意得出恰有三個面被涂色的有8個,再利用概率公式求出答案.【詳解】解:由題意可得:小立方體一共有27個,恰有三個面被涂色的為棱長為3的正方體頂點處的8個小正方體;故取得的小正方體恰有三個面被涂色.的概率為.故選:B.【點睛】此題主要考查了概率公式的應用,正確得出三個面被涂色.小立方體的個數是解題關鍵.二、多選題1、ABD【解析】【分析】根據三角形內心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內心是三個內角平分線的交點,內心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內心是三個內角平分線的交點,三角形的內心一定在三角形的內部,錯誤,該選項符合題意;C、等邊三角形的內心,外心重合,正確,該選項不符合題意;D、經過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的定義與定理.2、ABD【解析】【分析】根據垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關鍵.3、ABC【解析】【分析】證明△AOE是等邊三角形,EF⊥OA,AD⊥OE,可判斷A;.證明∠AGF=∠AOF=60°,可判斷B;證明FG=2GE,可判斷C;證明EF=AF,可判斷D.【詳解】解:如圖,在正六邊形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等邊三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四邊形AEOF,四邊形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的內心與外心都是點G,故A正確,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正確,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴點G是線段EF的三等分點,故C正確,∵AF=AE,∠FAE=120°,∴EF=AF,故D錯誤,故答案為:ABC.【考點】本題考查作圖-復雜作圖,等邊三角形的判定和性質,菱形的判定和性質,三角形的內心,外心等知識,解題的關鍵是證明四邊形AEOF,四邊形AODE都是菱形.4、AB【解析】【分析】根據軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉180°,旋轉后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關鍵是熟記其概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.5、AD【解析】【分析】結合圖象,根據函數的開口方向、與y軸的交點、對稱軸的位置、和當x=-2時,x=-1時,對應y值的大小依次可判斷.【詳解】解:根據開口方向可知,根據圖象與y軸的交點可知,根據對稱軸可知:,∴,∴,,故A選項正確;∴abc<0,故B選項錯誤;根據圖象可知,當x=-2時,,故C選項錯誤;根據圖象可知,當x=-1時,,∴,故D選項正確.故選:AD.【考點】本題考查了二次函數圖象判定式子的正負.二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點確定,注意特殊點的函數值.三、填空題1、0.8【分析】重復試驗次數越多,其頻率越能估計概率,求出射擊1000次時的頻率即可.【詳解】解:由題意可知射擊1000次時,運動員射擊一次時“射中9環(huán)以上”的頻率為∴用頻率估計概率為0.801,保留小數點后一位可知概率值為0.8故答案為:0.8.【點睛】本題考查了概率.解題的關鍵在于明確頻率估計概率時要在重復試驗次數盡可能多的情況下.2、21【解析】【分析】先根據根與系數的關系得到m+n=3,mn=﹣3,再根據完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.3、【解析】【分析】由“滋生函數”和“本源函數”的定義,運用待定系數法求出函數的本源函數.【詳解】解:由題意得解得∴函數的本源函數是.故答案為:.【考點】本題考查新定義運算下的一次函數和二次函數的應用,解題關鍵是充分理解新定義“本源函數”.4、【分析】繞坐標原點順時針旋轉即關于原點中心對稱,找到關于原點中心對稱的點的坐標即可,根據關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數,即可求解.【詳解】解:將點繞坐標原點順時針旋轉后得到點Q,則點Q的坐標是故答案為:【點睛】本題考查了求一個點關于原點中心對稱的點的坐標,掌握關于原點中心對稱的點的坐標特征是解題的關鍵.關于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數.5、65【分析】根據切線的性質得到OA⊥AP,根據直角三角形的兩銳角互余計算,得到答案.【詳解】解:∵PA是⊙O的切線,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案為:65.【點睛】本題考查的是切線的性質、直角三角形的性質,掌握圓的切線垂直于經過切點的半徑是解題的關鍵.四、簡答題1、(1);(2);(3)存在.【解析】【分析】(1)由,且AB=6即可求出AO的長,再由勾股定理即可求出BO的長,即可求出A和B點坐標.(2)P點從原點出發(fā),在到達終點前,直線l掃過的面積始終為平行四邊形BMNE,故求該平行四邊的底BE和高OP,相乘即得到面積S;由,且AB=6,可求出AC=10,過D點作DF⊥x軸,易證,求出CF=AO,進而求出OF的長;由,故,求出OE的長,進而求出OB+OE=BE.(3)分類討論,當B為直角頂角時,過Q1點作QH⊥y軸,此時△Q1HB≌△BOC,即可求出Q1的坐標;當Q2為直角頂角時,過Q2點作QM⊥y軸,QN⊥x軸,此時Q2MB≌Q2NC,即可求出Q2的坐標.【詳解】解:(1)由題意可得故答案為:(2)過點作軸,垂足為F,則

∴∵∴,故,求得.當時,直線掃過的圖形是平行四邊形,故答案為:.存在,.如下圖所示:情況一:當B為直角頂角時,此時BQ1=BC,過Q1點作Q1H1⊥y軸于H1,∴∠Q1H1B=∠BOC=90°,且BQ1=BC,∵∠Q1BC=90°∴∠H1BQ1+∠OBC=90°又∠BCO+∠OBC=90°∴∠H1BO1=∠BCO在△Q1H1B和△BOC中:,∴△△Q1H1B≌△BOC(AAS)∴Q1H1=BO=,BH1=OC=,∴OH1=∴情況二:當Q2為直角頂角時,此時有Q2B=Q2C,過Q2點分別作Q2M⊥y軸,Q2N⊥x軸∴∠MQ2B+∠BQ2N=90°又∴∠NQ2C+∠BQ2N=90°∴∠MQ2B=∠NQ2C在△MQ2B和△NQ2C中,∴△MQ2B≌△NQ2C(AAS)∴MQ2=NQ2=OM=ON,且∠MON=90°∴四邊形Q2MON為正方形,設MB=NC=a則OC-a=ON=OB=,且OC=∴求得a=,∴ON=OM=OB+a=∴故答案為:和【考點】本題考查了三角函數求值、平行四邊形的面積公式、三角形全等、等腰直角三角形等相關知識,利用銳角相等,其對應的三角函數值相同,可列出比例求解未知線段長.2、(1)甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)當降價5元時,該商場利潤最大,最大利潤是2000元.【解析】【分析】(1)設甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據題意列出方程,解方程即可得出結論;(2)設甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,根據題意列出函數解析式,根據二次函數的性質求出函數的最值.【詳解】解:(1)設甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據題意得:,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),經檢驗,x=15是原分式方程的解,符合實際,∴x-5=15-5=10(元),答:甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)設甲種商品降價a元,則每天可多賣出20a箱,利潤為w元,由題意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,當a=5時,函數有最大值,最大值是2000元,答:當降價5元時,該商場利潤最大,最大利潤是2000元.【考點】本題考查了分式方程及二次函數的應用,解題的關鍵是理解題意,找出等量關系,準確列出分式方程及函數關系式.五、解答題1、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結果;(2)根據切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以OP為邊放在右側,圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據“定弦對定角”作F點的軌跡,根據切線性質,過點F作AB的垂線,再根據直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設⊙O的半徑為r,連接OE,OF,∵⊙O內切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設△ABC的內切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,FD⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點E,②以E為圓心,AE為半徑作圓,③過點D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點睛】本題考查三角形的內切圓性質、切線長定理、勾股定理、矩形的判定與性質、尺規(guī)作圖-作垂線,熟練掌握相關知識的聯系與運用是解答的關鍵.2、邊長為,邊心距為【分析】過點O作OE⊥BC,垂足為E,利用圓內接四邊形的性質求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據勾股定理求出OE、BE即可.【詳解】解:過點O作OE⊥BC,垂足為E,∵正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論