綜合解析北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練練習(xí)題(含答案解析)_第1頁
綜合解析北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練練習(xí)題(含答案解析)_第2頁
綜合解析北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練練習(xí)題(含答案解析)_第3頁
綜合解析北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練練習(xí)題(含答案解析)_第4頁
綜合解析北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市西城區(qū)育才學(xué)校7年級數(shù)學(xué)下冊第四章三角形同步訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,亮亮?xí)系娜切伪荒E污染了一部分,很快他就根據(jù)所學(xué)知識畫出一個與書上完全一樣的三角形.他的依據(jù)是()A. B. C. D.2、如圖,點,,,在一條直線上,,,,,,則()A.4 B.5 C.6 D.73、如圖,圖形中的的值是()A.50 B.60 C.70 D.804、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.75、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,106、如圖,為了估算河的寬度,我們可以在河的對岸選定一個目標(biāo)點,再在河的這一邊選定點和,使,并在垂線上取兩點、,使,再作出的垂線,使點、、在同一條直線上,因此證得,進(jìn)而可得,即測得的長就是的長,則的理論依據(jù)是()A. B. C. D.7、如圖,已知AB=AD,CB=CD,可得△ABC≌△ADC,則判斷的依據(jù)是()A.SSS B.SAS C.ASA D.HL8、將一副三角板按如圖所示的方式放置,使兩個直角重合,則∠AFD的度數(shù)是()A.10° B.15° C.20° D.25°9、滿足下列條件的兩個三角形不一定全等的是()A.周長相等的兩個三角形 B.有一腰和底邊對應(yīng)相等的兩個等腰三角形C.三邊都對應(yīng)相等的兩個三角形 D.兩條直角邊對應(yīng)相等的兩個直角三角形10、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,在長方形ABCD中,,.延長BC到點E,使,連結(jié)DE,動點P從點B出發(fā),以每秒2個單位長度的速度沿向終點A運動.設(shè)點P的運動時間為t秒,當(dāng)t的值為______________時,和全等.2、如圖,△ABC三個內(nèi)角的平分線交于點O,點D在AB的延長線上,AD=AC,BD=BO,若∠ACB=40°,則∠ABC的度數(shù)為_____.3、如圖,兩根旗桿CA,DB相距20米,且CA⊥AB,DB⊥AB,某人從旗桿DB的底部B點沿BA走向旗桿CA底部A點.一段時間后到達(dá)點M,此時他分別仰望旗桿的頂點C和D,兩次視線的夾角∠CMD=90°,且CM=DM.已知旗桿BD的高為12米,該人的運動速度為每秒2米,則這個人從點B到點M所用時間是_____秒.4、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)5、如圖,與的頂點A、B、D在同一直線上,,,,延長分別交、于點F、G.若,,則______.6、如圖,點,在直線上,且,且,過,,分別作,,,若,,,則的面積是______.7、已知a,b,c是的三條邊長,化簡的結(jié)果為_______.8、如圖,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動.它們運動的時間為設(shè)點的運動速度為,若使得與全等,則的值為______.9、如圖,在△ABC中,AD是BC邊上的中線,BE是△ABD中AD邊上的中線,若△ABC的面積是80,則△ABE的面積是________.10、如圖,已知AC與BD相交于點P,ABCD,點P為BD中點,若CD=7,AE=3,則BE=_________.三、解答題(6小題,每小題10分,共計60分)1、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長2、已知AMCN,點B在直線AM、CN之間,AB⊥BC于點B.(1)如圖1,請直接寫出∠A和∠C之間的數(shù)量關(guān)系:.(2)如圖2,∠A和∠C滿足怎樣的數(shù)量關(guān)系?請說明理由.(3)如圖3,AE平分∠MAB,CH平分∠NCB,AE與CH交于點G,則∠AGH的度數(shù)為.3、如圖,AD,BC相交于點O,AO=DO.(1)如果只添加一個條件,使得△AOB≌△DOC,那么你添加的條件是(要求:不再添加輔助線,只需填一個答案即可);(2)根據(jù)已知及(1)中添加的一個條件,證明AB=DC.4、在中,,,點D是直線AC上一動點,連接BD并延長至點E,使.過點E作于點F.(1)如圖1,當(dāng)點D在線段AC上(點D不與點A和點C重合)時,此時DF與DC的數(shù)量關(guān)系是______.(2)如圖2,當(dāng)點D在線段AC的延長線上時,依題意補(bǔ)全圖形,并證明:.(3)當(dāng)點D在線段CA的延長線上時,直接用等式表示線段AD,AF,EF之間的數(shù)量關(guān)系是______.5、在復(fù)習(xí)課上,老師布置了一道思考題:如圖所示,點M,N分別在等邊的邊上,且,,交于點Q.求證:.同學(xué)們利用有關(guān)知識完成了解答后,老師又提出了下列問題:(1)若將題中“”與“”的位置交換,得到的是否仍是真命題?請你給出答案并說明理由.(2)若將題中的點M,N分別移動到的延長線上,是否仍能得到?請你畫出圖形,給出答案并說明理由.6、人教版初中數(shù)學(xué)教科書八年級上冊第36、37頁告訴我們作一個角等于已知角的方法:已知:∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作圖:(1)以O(shè)為圓心,任意長為半徑畫弧,分別交OA、OB于點C、D;(2)畫一條射線O′A′,以點O′為圓心,OC長為半徑畫弧,交O′A′于點C′;(3)以點C′為圓心,CD長為半徑畫弧,與第2步中所畫的弧相交于點D′;(4)過點D′畫射線O′B′,則∠A′O′B′=∠AOB.請你根據(jù)以上材料完成下列問題:(1)完成下面證明過程(將正確答案寫在相應(yīng)的橫線上).證明:由作圖可知,在△O′C′D′和△OCD中,,∴△O′C′D′≌,∴∠A′O′B'=∠AOB.(2)這種作一個角等于已知角的方法依據(jù)是.(填序號)①AAS;②ASA;③SSS;④SAS-參考答案-一、單選題1、C【分析】根據(jù)題意,可知仍可辨認(rèn)的有1條邊和2個角,且邊為兩角的夾邊,即可根據(jù)來畫一個完全一樣的三角形【詳解】根據(jù)題意可得,已知一邊和兩個角仍保留,且邊為兩角的夾邊,根據(jù)兩個三角形對應(yīng)的兩角及其夾邊相等,兩個三角形全等,即故選C【點睛】本題考查了三角形全等的性質(zhì)與判定,掌握三角形的判定方法是解題的關(guān)鍵.2、A【分析】由題意易得,然后可證,則有,進(jìn)而問題可求解.【詳解】解:∵,∴,∵,,∴,∴,∵,∴;故選A.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.3、B【分析】根據(jù)三角形外角的性質(zhì):三角形一個外角的度數(shù)等于與其不相鄰的兩個內(nèi)角的度數(shù)和進(jìn)行求解即可.【詳解】解:由題意得:∴,∴,故選B.【點睛】本題主要考查了三角形外角的性質(zhì),解一元一次方程,熟知三角形外角的性質(zhì)是解題的關(guān)鍵.4、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進(jìn)而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.5、D【分析】根據(jù)圍成三角形的條件逐個分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點睛】此題考查了圍成三角形的條件,解題的關(guān)鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.6、C【分析】根據(jù)題意及全等三角形的判定定理可直接進(jìn)行求解.【詳解】解:∵,,∴,在和中,,∴(ASA),∴;故選C.【點睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.7、A【分析】由利用邊邊邊公理證明即可.【詳解】解:故選A【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明三角形全等”是解本題的關(guān)鍵.8、B【分析】根據(jù)三角板各角度數(shù)和三角形的外角性質(zhì)可求得∠BFE,再根據(jù)對頂角相等求解即可.【詳解】解:由題意,∠ABC=60°,∠E=45°,∵∠ABC=∠E+∠BFE,∴∠BFE=∠ABC-∠E=60°-45°=15°,∴∠AFD=∠BFE=15°,故選:B.【點睛】本題考查三角板各角的度數(shù)、三角形的外角性質(zhì)、對頂角相等,熟知三角板各角的度數(shù),掌握三角形的外角性質(zhì)是解答的關(guān)鍵.9、A【分析】根據(jù)全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS對各選項進(jìn)行一一判斷即可.【詳解】解:A、周長相等的兩個三角形不一定全等,符合題意;B、有一腰和底邊對應(yīng)相等的兩個等腰三角形根據(jù)三邊對應(yīng)相等判定定理可判定全等,不符合題意;C、三邊都對應(yīng)相等的兩個三角形根據(jù)三邊對應(yīng)相等判定定理可判定全等,不符合題意;D、兩條直角邊對應(yīng)相等的兩個直角三角形根據(jù)SAS判定定理可判定全等,不符合題意.故選:A.【點睛】此題考查了全等三角形的判定方法,解題的關(guān)鍵是熟練掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).10、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.二、填空題1、1或7【分析】分兩種情況進(jìn)行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結(jié)果.【詳解】解:當(dāng)點P在BC上時,∵AB=CD,∴當(dāng)△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當(dāng)P在AD上時,∵AB=CD,∴當(dāng)△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當(dāng)t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點睛】本題考查了全等三角形的判定,解題的關(guān)鍵在于能夠利用分類討論的思想進(jìn)行求解.2、度【分析】連接,,利用證明,則,根據(jù)角平分線的定義得到,再利用三角形外角性質(zhì)得出,最后根據(jù)角平分線的定義即可得解.【詳解】解:連接,,平分,,在和中,,,,平分,,,,,,,平分,,故答案為:.【點睛】本題考查了全等三角形的判定與性質(zhì),角平分線,解題的關(guān)鍵是利用證明.3、4【分析】先說明,再利用證明,然后根據(jù)全等三角形的性質(zhì)可得米,再根據(jù)線段的和差求得BM的長,最后利用時間=路程÷速度計算即可.【詳解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵該人的運動速度,他到達(dá)點M時,運動時間為s.故答案為:4.【點睛】本題主要考查了全等三角形的判定與性質(zhì),根據(jù)題意證得是解答本題的關(guān)鍵.4、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點的運用.要求學(xué)生具備運用這些定理進(jìn)行推理的能力.5、【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【點睛】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個內(nèi)角和是解答本題的關(guān)鍵.6、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.7、2b【分析】由題意根據(jù)三角形三邊關(guān)系得到a+b-c>0,b-a-c<0,再去絕對值,合并同類項即可求解.【詳解】解:∵a,b,c是的三條邊長,∴a+b-c>0,a-b-c<0,∴|a+b-c|+|a-b-c|=a+b-c-a+b+c=2b.故答案為:2b.【點睛】本題考查的是三角形的三邊關(guān)系以及去絕對值和整式加減運算,熟知三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答此題的關(guān)鍵.8、或【分析】分兩種情形:①當(dāng)≌時,可得:;②當(dāng)≌時,,根據(jù)全等三角形的性質(zhì)分別求解即可.【詳解】解:①當(dāng)≌時,可得:,運動時間相同,,的運動速度也相同,;②當(dāng)≌時,,,,,故答案為:或.【點睛】本題考查全等三角形的性質(zhì),路程、速度、時間之間的關(guān)系等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識進(jìn)行分類解決問題.9、20【分析】根據(jù)三角形的中線把三角形分成面積相等的兩部分,求出面積比,即可解答.【詳解】解:∵AD是BC上的中線,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD邊上的中線,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面積是80,∴S△ABE=×80=20.故答案為:20.【點睛】本題主要考查了三角形面積的求法,掌握三角形的中線將三角形分成面積相等的兩部分,是解答本題的關(guān)鍵.10、4【分析】由題意利用全等三角形的判定得出,進(jìn)而依據(jù)全等三角形的性質(zhì)得出進(jìn)行分析計算即可.【詳解】解:∵ABCD,∴,∵點P為BD中點,∴,∵,,∴,∴,∵CD=7,AE=3,∴.故答案為:4.【點睛】本題考查全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.三、解答題1、第三邊長為7cm或9cm或11cm【分析】設(shè)三角形的第三邊長為xcm,根據(jù)三角形的三邊關(guān)系確定x的范圍,然后根據(jù)題意可求解.【詳解】解:設(shè)三角形的第三邊長為xcm,由三角形的兩邊長分別是4cm和9cm可得:,即為,∵第三邊長是奇數(shù),∴或9或11.【點睛】本題主要考查三角形的三邊關(guān)系,熟練掌握三角形的三邊關(guān)系是解題的關(guān)鍵.2、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,見解析;(3)45°【分析】(1)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(2)過點B作BE∥AM,利用平行線的性質(zhì)即可求得結(jié)論;(3)利用(2)的結(jié)論和三角形的外角等于和它不相鄰的兩個內(nèi)角的和即可求得結(jié)論.【詳解】(1)過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C=∠CBE,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.故答案為:∠A+∠C=90°;(2)∠A和∠C滿足:∠C﹣∠A=90°.理由:過點B作BE∥AM,如圖,∵BE∥AM,∴∠A=∠ABE,∵BE∥AM,AM∥CN,∴BE∥CN,∴∠C+∠CBE=180°,∴∠CBE=180°﹣∠C,∵AB⊥BC,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∴∠A+180°﹣∠C=90°,∴∠C﹣∠A=90°;(3)設(shè)CH與AB交于點F,如圖,∵AE平分∠MAB,∴∠GAF=∠MAB,∵CH平分∠NCB,∴∠BCF=∠BCN,∵∠B=90°,∴∠BFC=90°﹣∠BCF,∵∠AFG=∠BFC,∴∠AFG=90°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=90°,∴∠AGH=90°﹣45°=45°.故答案為:45°.【點睛】本題考查平行線的性質(zhì)以及三角形外角的性質(zhì),由題作出輔助線是解題的關(guān)鍵.3、(1)OB=OC(或,或);(2)見解析【分析】(1)根據(jù)SAS添加OB=OC即可;(2)由(1)得△AOB≌△DOC,由全等三角形的性質(zhì)可得結(jié)論.【詳解】解:(1)添加的條件是:OB=OC(或,或)證明:在和中所以,△AOB≌△DOC(2)由(1)知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論