版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當(dāng)四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.2、如圖,在正方形網(wǎng)格上有5個三角形(三角形的頂點均在格點上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(
)A.②④ B.②⑤ C.③④ D.④⑤3、如圖,點O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°4、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似5、對于函數(shù)的圖象,下列說法不正確的是(
)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交6、由二次函數(shù),可知(
)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當(dāng)x<3時,y隨x的增大而增大二、多選題(7小題,每小題2分,共計14分)1、如圖,AB是圓O的直徑,點G是圓上任意一點,點C是的中點,,垂足為點E,連接GA,GB,GC,GD,BC,GB與CD交于點F,則下列表述正確的是(
)A. B.C. D.2、如圖,正方形ABCD的邊長為8,點E、F分別在邊AD、BC上,將正方形沿EF折疊,使點A落在邊CD上的A′處,點B落在B′處,A′B′交BC于點G.下列結(jié)論正確的是(
)A.當(dāng)A′為CD中點時,tan∠DA′E=B.當(dāng)A′D∶DE∶A′E=3∶4∶5時,A′C=C.連接AA′,則AA′=EFD.當(dāng)A′(點A′不與C、D重合)在CD上移動時,△A′CG周長隨著A′位置變化而變化3、如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且,下列結(jié)論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④4、下列多邊形中,一定不相似的是(
)A.兩個矩形 B.兩個菱形 C.兩個正方形 D.兩個平行四邊形5、已知函數(shù)y=的圖象如圖,以下結(jié)論:其中正確的有(
)A.m<0B.在每個分支上y隨x的增大而增大C.若點A(﹣1,a)、點B(2,b)在圖象上,則a<bD.若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上6、下表中列出的是一個二次函數(shù)的自變量與函數(shù)的幾組對應(yīng)值:…013……6…下列各選項中,正確的是(
)A.函數(shù)圖象的開口向下 B.當(dāng)時,的值隨的增大而增大C.函數(shù)的圖象與軸無交點 D.這個函數(shù)的最小值小于7、如圖,的頂點位于正方形網(wǎng)格的格點上,若,則滿足條件的是(
)A. B.C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,小亮為了測量校園里教學(xué)樓AB的高度,將測角儀CD豎直放置在與教學(xué)樓水平距離為18m的地面上,若測角儀的高度為I.5m,測得教學(xué)樓的頂部A處的仰角為30°,則教學(xué)樓的高度是____.2、已知=,則=________.3、將二次函數(shù)化成一般形式,其中二次項系數(shù)為________,一次項系數(shù)為________,常數(shù)項為________.4、在平面直角坐標(biāo)系中,二次函數(shù)過點(4,3),若當(dāng)0≤x≤a時,y有最大值7,最小值3,則a的取值范圍是_____.5、如圖,四邊形內(nèi)接于⊙O若,則_______°.6、如圖是二次函數(shù)和一次函數(shù)y2=kx+t的圖象,當(dāng)y1≥y2時,x的取值范圍是_____.7、若拋物線的圖像與軸有交點,那么的取值范圍是________.四、解答題(6小題,每小題10分,共計60分)1、(1)閱讀理解如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標(biāo)分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認(rèn)為:可以通過“若,則”的思路證明上述命題.小晴認(rèn)為:可以通過“若,,且,則”的思路證明上述命題.請你選擇一種方法證明(1)中的命題.2、為了測量大樓頂上(居中)避雷針BC的長度,在地面上點A處測得避雷針底部B和頂部C的仰角分別為55°58′和57°,已知點A與樓底中間部位D的距離約為80米,求避雷針BC的長度.(參考數(shù)據(jù):sin55°58′≈0.83,cos55°58′≈0.56,tan55°58′≈1.48,sin57°≈0.84,tan57°≈1.54)3、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.4、已知關(guān)于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時,新拋物線對應(yīng)的函數(shù)有最小值3,求的值.5、某校舉行田徑運動會,學(xué)校準(zhǔn)備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當(dāng)氣體的體積為時,氣壓是多少?(3)當(dāng)氣球內(nèi)的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應(yīng)不小于多少?6、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當(dāng)BD的長是多少時,圖中的兩個直角三角形相似?-參考答案-一、單選題1、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.2、A【解析】【分析】根據(jù)兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點】本題考查相似三角形的判定,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.3、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.4、C【解析】【分析】直接利用相似圖形的性質(zhì)分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關(guān)鍵.5、D【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),進行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當(dāng),y有最大值k,故C正確;當(dāng),,與y軸肯定有交點,故D錯誤;故選擇:D.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).6、C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),直接根據(jù)的值得出開口方向,再利用頂點坐標(biāo)的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數(shù),可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當(dāng)時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數(shù)的性質(zhì),同學(xué)們應(yīng)根據(jù)題意熟練地應(yīng)用二次函數(shù)性質(zhì),這是中考中考查重點知識.二、多選題1、ACD【解析】【分析】根據(jù)垂徑定理和圓周角定理可以判斷A,根據(jù)圓周角定理可以判斷B,根據(jù)圓周角定理、垂徑定理以及等角對等邊,即可判斷C,根據(jù)圓周角定理、垂徑定理以及平行線的判定,即可判斷D.【詳解】解:∵AB是圓O的直徑,,∴,∴,故A正確;∵AB是圓O的直徑,,∴,∵,即,也沒有其他條件可以證得和的另外一組內(nèi)角對應(yīng)相等,∴不能證得,故B不正確;∵點C是的中點,∴,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故C正確;∵點C是的中點,∴,∵AB是圓O的直徑,,∴,∴,∴,∴,故D正確.故選ACD.【考點】本題主要考查了垂徑定理、圓周角定理、等腰三角形的判定以及平行線的判定.2、ABC【解析】【分析】A.當(dāng)A′為CD中點時,設(shè)A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當(dāng)△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進一步求得A'D=,即可判斷出B正確;C.過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長=16,即可得出D錯誤.【詳解】解:∵A′為CD中點,正方形ABCD的邊長為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設(shè)A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當(dāng)△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當(dāng)A'在CD上移動時,△A'CG周長不變,故D錯誤.故選:ABC【考點】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關(guān)圖形的性質(zhì)是解決本題的關(guān)鍵.3、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質(zhì)逐一判斷選項即可.【詳解】解:在正方形中,是的中點,是上一點,且,,..,.,,,..,.②③正確.故選:BC.【考點】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握判定定理有①有兩個對應(yīng)角相等的三角形相似,②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.4、ABD【解析】【分析】利用相似多邊形的對應(yīng)邊的比相等,對應(yīng)角相等分析.【詳解】解:要判斷兩個多邊形是否相似,需要看對應(yīng)角是否相等,對應(yīng)邊的比是否相等.矩形、菱形、平行四邊形都屬于形狀不唯一確定的圖形,即對應(yīng)角、對應(yīng)邊的比不一定相等,故不一定相似,選項A、B、D符合題意;而兩個正方形,對應(yīng)角都是90°,對應(yīng)邊的比也都相等,故一定相似,選項C不符合題意.故選:ABD.【考點】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊的比相等,對應(yīng)角相等.兩個條件必須同時具備.5、ABD【解析】【分析】利用反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點的坐標(biāo)特征逐項判定即可.【詳解】解:①根據(jù)反比例函數(shù)的圖象的兩個分支分別位于二、四象限,可得m<0,故①正確;②在每個分支上y隨x的增大而增大,故②正確;③若點A(﹣1,a)、點B(2,b)在圖象上,則a>b,故③錯誤;④若點P(x,y)在圖象上,則點P1(﹣x,﹣y)也在圖象上,正確.故選:ABD.【考點】本題主要考查了反比例函數(shù)的性質(zhì)及反比例函數(shù)的圖象上的點的坐標(biāo)特征,掌握反比例函數(shù)的圖象上的點的坐標(biāo)特征成為解答本題的關(guān)鍵.6、BD【解析】【分析】根據(jù)拋物線經(jīng)過點(0,-4),(3,-4)可得拋物線對稱軸為直線,由拋物線經(jīng)過點(-2,6)可得拋物線開口向上,進而求解.【詳解】解:∵拋物線經(jīng)過點(0,-4),(3,-4),∴拋物線對稱軸為直線,∵拋物線經(jīng)過點(-2,6),∴當(dāng)x<時,y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點,故A,C錯誤,不符合題意;∴x>時,y隨x增大而增大,故B正確,符合題意;由對稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點】本題考查二次函數(shù)的圖象與性質(zhì),解題關(guān)鍵是掌握二次函數(shù)與方程的關(guān)系.7、AD【解析】【分析】根據(jù)在直角三角形中一個角的正切值等于其所對的邊與斜邊的比值進行構(gòu)造直角三角形求解判斷即可.【詳解】解:A、如圖所示,,∴,故此選項符合題意;B、如圖所示,,∴,故此選項不符合題意;C、如圖所示,,∴,故此選項不符合題意;D、如圖所示,,,BD⊥AC,∴,∴,∴∴,故此選項符合題意;故選AD.【考點】本題主要考查了求正切值和勾股定理,解題的關(guān)鍵在于能夠構(gòu)造直角三角形進行求解.三、填空題1、19.5m.【解析】【分析】作DE⊥AB于E,根據(jù)tan∠ADE=求出AE,故可求解.【詳解】解:作DE⊥AB于E,在Rt△ADE中,tan∠ADE=,∴AE=DE?tan∠ADE=18×=18,∴AB=AE+EB=18+1.5=19.5(m),故答案為:19.5m.【考點】此題主要考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是熟知正切的定義.2、【解析】【分析】利用比例的性質(zhì)進行變形,然后代入代數(shù)式中合并約分即可.【詳解】解:∵,∴,則.故答案為:.【考點】本題考查比例問題,關(guān)鍵掌握比例的性質(zhì),會利用性質(zhì)把比例式進行恒等變形,會根據(jù)需要選擇靈活的比例式解決問題.3、
【解析】【分析】通過去括號,移項,可以把方程化成二次函數(shù)的一般形式,然后確定二次項系數(shù),一次項系數(shù),常數(shù)項.【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項系數(shù)為﹣2;一次項系數(shù)為8;常數(shù)項為﹣8.故答案為﹣2,8,﹣8.【考點】本題考查的是二次函數(shù)的一般形式,通過去括號,移項,合并同類項,得到二次函數(shù)的一般形式,確定二次項系數(shù),一次項系數(shù),常數(shù)項的值.4、2≤a≤4.【解析】【分析】先求得拋物線的解析式,根據(jù)二次函數(shù)的性質(zhì)以及二次函數(shù)圖象上點的坐標(biāo)特征即可得到a的取值范圍.【詳解】解:∵二次函數(shù)y=-x2+mx+3過點(4,3),∴3=-16+4m+3,∴m=4,∴y=-x2+4x+3,∵y=-x2+4x+3=-(x-2)2+7,∴拋物線開口向下,對稱軸是x=2,頂點為(2,7),函數(shù)有最大值7,把y=3代入y=-x2+4x+3得3=-x2+4x+3,解得x=0或x=4,∵當(dāng)0≤x≤a時,y有最大值7,最小值3,∴2≤a≤4.故答案為:2≤a≤4.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象上點的坐標(biāo)特征,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.5、104【解析】【分析】根據(jù)圓內(nèi)接四邊形的對角互補列式計算即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點】本題考查的是圓內(nèi)接四邊形的性質(zhì),掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.6、﹣1≤x≤2【解析】【分析】根據(jù)圖象可以直接回答,使得y1≥y2的自變量x的取值范圍就是直線y1=kx+m落在二次函數(shù)y2=ax2+bx+c的圖象上方的部分對應(yīng)的自變量x的取值范圍.【詳解】根據(jù)圖象可得出:當(dāng)y1≥y2時,x的取值范圍是:﹣1≤x≤2.故答案為:﹣1≤x≤2.【考點】本題考查了二次函數(shù)的性質(zhì).本題采用了“數(shù)形結(jié)合”的數(shù)學(xué)思想,使問題變得更形象、直觀,降低了題的難度.7、【解析】【分析】由拋物線的圖像與軸有交點可知,從而可求得的取值范圍.【詳解】解:∵拋物線的圖像與軸有交點∴令,有,即該方程有實數(shù)根∴∴.故答案是:【考點】本題考查了二次函數(shù)與軸的交點情況與一元二次方程分的情況的關(guān)系、解一元一次不等式,能由已知條件列出關(guān)于的不等式是解題的關(guān)鍵.四、解答題1、(1);(2)證明見解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點】本題考查反比例函數(shù)圖形上的點的坐標(biāo)特征,反比例函數(shù)的圖象等知識,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.2、避雷針BC的長度為4.8米.【解析】【分析】解直角三角形求出CD,BD,根據(jù)BC=CD-BD求解即可.【詳解】解:在Rt△ABD中,∵,∴1.48=,∵AD=80米,∴BD=118.4(米),在Rt△CAD中,∵tan∠CAD=,∴1.54=,∴CD=123.2(米),∴BC=CD-BD=4.8(米)答:避雷針BC的長度為4.8米.【考點】本題考查解直角三角形的應(yīng)用,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.3、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴GF:AE=GM:AB,∵∠AMG=∠D=∠DAM=90°,∴四邊形AMGD是矩形,∴GM=AD,∴GF:AE=AD:AB,∵四邊形ABCD是矩形,∴BC=AD,∴GF:AE=BC:AB,∵,∴.(3)解:如圖(3)中,作PM⊥BC交BC的延長線于M.由BE:BF=3:4,設(shè)BE=3k,BF=4k,則EF=AF=5k,∵,,∴AE=,在直角三角形ABE中,根據(jù)勾股定理,得,∴∴k=1或﹣1(舍去),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴,∴,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.【考點】本題考查了正方形、矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,正確尋找全等三角形或相似三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,是解題的關(guān)鍵.4、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當(dāng)拋物線開口向上時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深圳公安院校公務(wù)員考試試題及答案
- 上海公務(wù)員考試綜合管理試題及答案
- 2025年量子計算商業(yè)化落地路徑與挑戰(zhàn)行業(yè)報告
- 2025年全球鈉離子電池市場五年增長潛力報告
- 數(shù)字化技術(shù)發(fā)展倡議書3篇
- 人民銀行協(xié)議書
- 夾具鉗工誠信模擬考核試卷含答案
- 餐具及廚具制作工創(chuàng)新思維考核試卷含答案
- 爬行類養(yǎng)殖工風(fēng)險評估考核試卷含答案
- 廣州環(huán)投集團招聘面試題及答案
- 汽車發(fā)動機測試題(含答案)
- IPC6012DA中英文版剛性印制板的鑒定及性能規(guī)范汽車要求附件
- 消除母嬰三病傳播培訓(xùn)課件
- 學(xué)校餐費退費管理制度
- T/CUPTA 010-2022共享(電)單車停放規(guī)范
- 設(shè)備修理工培訓(xùn)體系
- 《社區(qū)營養(yǎng)健康》課件
- DB33T 2455-2022 森林康養(yǎng)建設(shè)規(guī)范
- 北師大版數(shù)學(xué)三年級上冊課件 乘法 乘火車-課件01
- 【MOOC】微處理器與嵌入式系統(tǒng)設(shè)計-電子科技大學(xué) 中國大學(xué)慕課MOOC答案
- 專題3-8 拋物線中的八個??级壗Y(jié)論與秒殺模型(解析版)-A4
評論
0/150
提交評論