版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省平度市中考數學真題分類(平行線的證明)匯編定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在△ABC中,∠A=30°,∠B=50°,將點A與點B分別沿MN和EF折疊,使點A、B與點C重合,則∠NCF的度數為(
).A.22° B.21° C.20° D.19°2、將一副學生用的三角板(一個銳角為30°的直角三角形,一個銳角為45°的直角三角形)如圖疊放,則下列4個結論中正確的個數有(
)①∠AOC+∠BOD=90°;②∠AOC=∠BOD;③∠AOC-∠CEA=15°;④如果OB平分∠DOC,則OC平分∠AOBA.0 B.1 C.2 D.33、如圖,,若,則的度數是(
)A.80° B.70° C.65° D.60°4、如圖,EF與的邊BC,AC相交,則與的大小關系為(
).A. B.C. D.大小關系取決于的度數5、如圖,是某企業(yè)甲、乙兩位員工的能力測試結果的網狀圖,以O為圓心的五個同心圓分別代表能力水平的五個等級由低到高分別賦分1至5分,由原點出發(fā)的五條線段分別指向能力水平的五個維度,網狀圖能夠更加直觀的描述測試者的優(yōu)勢和不足,觀察圖形,有以下幾個推斷:①甲和乙的動手操作能力都很強;②缺少探索學習的能力是甲自身的不足;③與甲相比乙需要加強與他人的溝通合作能力;④乙的綜合評分比甲要高.其中合理的是(
)A.①③ B.②④ C.①②③ D.①②③④6、如圖,在三角形ABC中,,,D是BC上一點,將三角形ABD沿AD翻折后得到三角形AED,邊AE交射線BC于點F,若,則(
)A.120° B.135° C.110° D.150°7、如圖,點E在的延長線上,下列條件不能判斷的是(
)A. B. C. D.8、如圖,點E在射線AB上,要ADBC,只需(
)A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、一副三角板按如圖所示疊放在一起,其中點B、D重合,若固定三角形AOB,改變三角板ACD的位置(其中A點位置始終不變),下列條件①∠BAD=30°;②∠BAD=60°;③∠BAD=120°;④∠BAD=150°中,能得到的CD∥AB的有__________.(填序號)2、把“同角的余角相等”改成“如果…,那么…”:_________________________________.3、如圖,E為△ABC的BC邊上一點,點D在BA的延長線上,DE交AC于點F,∠B=46°,∠C=30°,∠EFC=70°,則∠D=______.4、如圖,點O是△ABC的三條角平分線的交點,連結AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)5、如圖,直線a,b與直線c,d相交,若∠1=∠2,∠3=70°,則∠4的度數是;6、如圖,直線AB、CD相交于點O,∠BOC=α,點F在直線AB上且在點O的右側,點E在射線OC上,連接EF,直線EM、FN交于點G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度數與∠AFE的度數無關,則∠EGF=__.(用含有α的代數式表示)7、如圖,一副三角板按如圖放置,則∠DOC的度數為______.三、解答題(7小題,每小題10分,共計70分)1、如圖所示,AE為△ABC的角平分線,CD為△ABC的高,若∠B=30°,∠ACB為70°.(1)求∠CAF的度數;(2)求∠AFC的度數.2、已知:如圖,△ABC是任意一個三角形,求證:∠A+∠B+∠C=180°.3、在△ABC中,∠ADB=100°,∠C=80°,∠BAD=∠DAC,BE平分∠ABC,求∠BED的度數.
4、已知:如圖,點B、C在線段AD的異側,點E、F分別是線段AB、CD上的點,∠AEG=∠AGE,∠C=∠DGC.(1)求證:AB//CD;(2)若∠AGE+∠AHF=180°,求證:∠B=∠C;(3)在(2)的條件下,若∠BFC=4∠C,求∠D的度數.5、如圖,在△ABC中,∠A=55°,∠ABD=32°,∠ACB=70°,且CE平分∠ACB,求∠DEC的度數.6、如圖,已知∠1+∠2=180°,∠DEF=∠A,求證:∠ACB=∠DEB.7、如圖,已知,,試說明的理由.-參考答案-一、單選題1、C【解析】【分析】根據三角形的內角和定理可得∠ACB=100°,再由折疊的性質可得∠ACN=∠A=30°,∠FCE=∠B=50°,即可求解.【詳解】解:∵∠A=30°,∠B=50°,∴∠ACB=100°,∵將點A與點B分別沿MN和EF折疊,使點A、B與點C重合,∴∠ACN=∠A=30°,∠FCE=∠B=50°,∴∠NCF=20°,故選:C.【考點】本題主要考查了圖形的折疊的性質、三角形內角和定理、熟練掌握圖形的折疊的性質、三角形內角和定理是解題的關鍵.2、D【解析】【分析】根據同角的余角相等可得∠AOC=∠BOD;根據三角形的內角和即可得出∠AOC-∠CEA=15°;根據角平分線的定義可判定OC平分∠AOB.【詳解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB,即∠BOD=∠AOC,故②正確;如圖,AB與OC交于點P,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正確;如果OB平分∠DOC,則∠DOB=∠BOC=45°,則∠AOC=∠BOC=45°,故OC平分∠AOB,故④正確;由②知:∠AOC=∠BOD,故當∠AOC=∠BOD=45°時,∠AOC+∠BOD=90°成立,否則不成立,故①不正確;綜上,②③④正確,共3個,故選:D.【考點】本題考查了余角以及三角形內角和定理,角平分線的定義,熟知余角的性質以及三角形內角和是180°是解答此題的關鍵.3、B【解析】【分析】由根據全等三角形的性質可得,再利用三角形內角和進行求解即可.【詳解】,,,,,,故選:B.【考點】本題考查了全等三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.4、C【解析】【分析】根據對頂角相等和三角形的內角和定理即可得結論.【詳解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故選:C【考點】本題主要考查對頂角的性質和三角形的內角和定理,掌握對頂角的性質和三角形的內角和定理是解題的關鍵.5、D【解析】【分析】根據甲、乙兩位員工的能力測試結果的網狀圖一一判斷即可得到答案;【詳解】解:因為甲、乙兩位員工的動手操作能力均是5分,故甲乙兩人的動手操作能力都很強,故①正確;因為甲的探索學習的能力是1分,故缺少探索學習的能力是甲自身的不足,故②正確;甲的與他人的溝通合作能力是5分,乙的與他人的溝通合作能力是3分,故與甲相比乙需要加強與他人的溝通合作能力,故③正確;乙的綜合評分是:3+4+4+5+5=22分,甲的綜合評分是:1+4+4+5+5=19分,故乙的綜合評分比甲要高,故④正確;故選:D;【考點】本題主要考查圖象信息題,能從圖象上獲取相關的信息是解題的關鍵;6、A【解析】【分析】由得到∠FDE=∠C=60°,由折疊的性質知∠DEF=∠B=30°,得到∠DFE=180°-∠FDE-∠DEF=90°,由外角的性質得∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,進一步求得∠ADC=60°,進一步求得∠BDA.【詳解】解:∵,∴∠FDE=∠C=60°,∵三角形ABD沿AD翻折后得到三角形AED,∴∠DEF=∠B=30°,∴∠DFE=180°-∠FDE-∠DEF=90°,∵∠ADC+60°=∠ADE=∠BDA,∠ADB+∠ADC=180°,∴∠ADC+60°+∠ADC=180°,∴∠ADC=60°,∴∠BDA=∠ADC+60°=120°,故選:A【考點】此題考查了折疊的性質,平行線性質,外角的性質等知識,熟練掌握折疊的性質是解題的關鍵.7、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當∠5=∠B時,AB∥CD,不合題意;B、當∠1=∠2時,AB∥CD,不合題意;C、當∠B+∠BCD=180°時,AB∥CD,不合題意;D、當∠3=∠4時,AD∥CB,符合題意;故選:D.【考點】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關鍵.8、A【解析】【分析】根據平行線的判定定理:同位角相等兩直線平行,內錯角相等兩直線平行,同旁內角互補兩直線平行,逐項進行判斷,即可求解.【詳解】解:∵∠A=∠CBE,∴ADBC.故選:A.【考點】本題考查了平行線的判定,解題的關鍵是掌握平行線的判定方法.二、填空題1、①④【解析】【分析】分兩種情況,根據CD∥AB,利用平行線的性質,即可得到∠BAD的度數.【詳解】解:如圖所示:當CD∥AB時,∠BAD=∠D=30°;如圖所示,當AB∥CD時,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;∴∠BAD=150°或∠BAD=30°.故答案為:①④.【考點】本題主要考查了平行線的判定,平行線的判定是由角的數量關系判斷兩直線的位置關系,平行線的性質是由直線的平行關系來尋找角的數量關系.2、如果兩個角是同一個角的余角,那么這兩個角相等【解析】【詳解】根據命題的特點,可以改寫為:“如果兩個角是同一個角的余角,那么這兩個角相等”故答案為:如果兩個角是同一個角的余角,那么這兩個角相等.【考點】本題考查了命題的特點,解題的關鍵是“如果”后面接題設,“那么”后面接結論.3、34°##34度【解析】【分析】根據題意先求∠DAC,再依據△ADF三角形內角和180°可得答案.【詳解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案為:34°.【考點】本題考查三角形內角和定理及三角形一個外角等于不相鄰的兩個內角的和,解題的關鍵是掌握三角形內角和定理.4、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質進行計算分析即可;③根據∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質是解題的關鍵.5、110°【解析】【詳解】試題解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案為點睛:同位角相等,兩直線平行.6、α##α3【解析】【分析】利用三角形外角的性質:三角形的一個外角等于和它不相鄰的兩個內角和,以及三角形內角和定理求解.【詳解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度數與∠AFE的度數無關,∴3n﹣1=0,即n=,∴∠EGF=α;故答案為:α.【考點】此題考查了三角形外角的性質及角度計算,解題的關鍵是理解∠EGF的度數與∠AFE的度數無關的含義.7、【解析】【分析】根據題意得:∠ACB=30°,∠ACD=45°,∠D=90°,從而得到∠OCD=15°,再由再由直角三角形兩銳角互余,即可求解.【詳解】解:根據題意得:∠ACB=30°,∠ACD=45°,∠D=90°,∴∠OCD=∠ACD-∠ACB=15°,∴∠DOC=90°-∠OCD=75°.故答案為:75°【考點】本題主要考查了直角三角形的性質,根據題意得到∠ACB=30°,∠ACD=45°,∠D=90°是解題的關鍵.三、解答題1、(1)40°;(2)130°【解析】【分析】(1)依據三角形內角和定理,即可得到∠BAC的度數,再根據角平分線的定義,即可得到∠CAF的度數;(2)依據三角形內角和定理,即可得到∠ACF的度數,再根據三角形內角和定理,即可得出∠AFC的度數.【詳解】解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣30°﹣70°=80°,又∵AE平分∠BAC,∴∠CAF=∠CAB=×80°=40°;(2)∵CD為△ABC的高,∠CAD=80°,∴Rt△ACD中,∠ACF=90°﹣80°=10°,∴∠AFC=180°﹣∠ACF﹣∠CAF=180°﹣10°﹣40°=130°.【考點】本題考查了三角形的外角性質、三角形的角平分線、中線和高、三角形內角和定理,熟練掌握性質,靈活運用定理是解題的關鍵.2、證明見解析【解析】【分析】過點A作EFBC,利用EFBC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代換可證∠BAC+∠B+∠C=180°.【詳解】解:如圖,過點A作EFBC,∵EFBC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【考點】本題考查了三角形的內角和定理的證明,作輔助線把三角形的三個內角轉化到一個平角上是解題的關鍵.3、50°【解析】【分析】由題意根據三角形外角的性質可得∠DAC=20°,然后再計算出∠EBA=30°,在根據三角形外角的性質可得∠BED的度數.【詳解】解:∵∠ADB=100°,∠C=80°,
∴∠DAC=20°,∵∠BAD=∠DAC,∴∠BAD=20°,∴∠DBA=180°﹣100°﹣20°=60°,∵BE平分∠ABC,∴∠EBA=30°,∴∠BED=30°+20°=50°.【考點】本題主要考查三角形內角和以及外角的性質,解題的關鍵是掌握三角形的外角等于與它不相鄰的兩個內角的和以及三角形內角和為180°.4、(1)見解析;(2)見解析;(3)108°【解析】【分析】(1)根據對頂角相等結合已知條件得出∠AEG=∠C,根據內錯角相等兩直線平行即可證得結論;(2)由∠AGE+∠AHF=180°等量代換得∠DGC+∠AHF=180°可判斷EC//BF,兩直線平行同位角相等得出∠B=∠AEG,結合(1)得出結論;(3)由(2)證得EC//BF,得∠BFC+∠C=180°,求得∠C的度數,由三角形內角和定理求得∠D的度數.【詳解】證明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC∴∠AEG=∠C
∴AB//CD(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°∴∠DGC+∠AHF=180°∴EC//BF
∴∠B=∠AEG由(1)得∠AEG=∠C
∴∠B=∠C(3)由(2)得EC//BF∴∠BFC+∠C=180°∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°∵∠C+∠DGC+∠D=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年鄭州城市職業(yè)學院單招綜合素質筆試備考試題含詳細答案解析
- 2026年南通科技職業(yè)學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年青島酒店管理職業(yè)技術學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年廣東工程職業(yè)技術學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年寧夏工商職業(yè)技術學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年南昌交通學院高職單招職業(yè)適應性測試備考題庫及答案詳細解析
- 2026年保定理工學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年黑龍江藝術職業(yè)學院單招綜合素質筆試備考試題含詳細答案解析
- 2026年保定幼兒師范高等??茖W校單招綜合素質筆試參考題庫含詳細答案解析
- 2026年南京鐵道職業(yè)技術學院單招綜合素質筆試參考題庫含詳細答案解析
- 河北審圖合同協(xié)議
- 溴化鋰機組回收合同(2篇)
- 菏澤某中學歷年自主招生試題
- 醫(yī)院非產科孕情管理和三病檢測工作流程
- 中小學的德育工作指南課件
- GB/T 3487-2024乘用車輪輞規(guī)格系列
- 物業(yè)保潔保安培訓課件
- 人教版初中英語七至九年級單詞匯總表(七年級至九年級全5冊)
- cnc加工中心點檢表
- 計劃決策評審-匯報模板課件
- 《食品分析》復習備考試題庫(附答案)
評論
0/150
提交評論