重難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)試題(含詳細(xì)解析)_第1頁
重難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)試題(含詳細(xì)解析)_第2頁
重難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)試題(含詳細(xì)解析)_第3頁
重難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)試題(含詳細(xì)解析)_第4頁
重難點解析人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》同步練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數(shù)應(yīng)為()A.20° B.55° C.45° D.60°2、如圖,在菱形中,P是對角線上一動點,過點P作于點E.于點F.若菱形的周長為24,面積為24,則的值為()A.4 B. C.6 D.3、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm4、如圖,在長方形ABCD中,AB=6,BC=8,點E是BC邊上一點,將△ABE沿AE折疊,使點B落在點F處,連接CF,當(dāng)△CEF為直角三角形時,則BE的長是()A.4 B.3 C.4或8 D.3或65、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點C為圓心,適當(dāng)長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是_____.2、如圖,正方形ABCD中,BD為對角線,且BE為∠ABD的角平分線,并交CD延長線于點E,則∠E=______°.3、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.4、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點E在正方形ABCD內(nèi),在對角線BD上有一動點K,則KA+KE的最小值為_____________.5、如圖,在正方形ABCD中,,E是AB的中點,P是AD上任意一點,連接PE,PC,若是等腰三角形,則AP的長可能是______.三、解答題(5小題,每小題10分,共計50分)1、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當(dāng)AC=BD時,四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對角線的條數(shù)也能判定它是正五邊形,問:至少需要幾條對角線相等才能判定它是正五邊形?請說明理由.2、在平面直角坐標(biāo)系中,過A(0,4)的直線a垂直于y軸,點M(9,4)為直線a上一點,若點P從點M出發(fā),以每秒2cm的速度沿直線a向左移動,點Q從原點同時出發(fā),以每秒1cm的速度沿x軸向右移動,(1)幾秒后PQ平行于y軸?(2)在點P、Q運動的過程中,若線段OQ=2AP,求點P的坐標(biāo).3、如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形.(1)在圖1中,畫一個三邊長都是有理數(shù)的直角三角形;(2)在圖2中,畫一個以BC為斜邊的直角三角形,使它們的三邊長都是無理數(shù)且都不相等;(3)在圖3中,畫一個正方形,使它的面積是10.4、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點D作AD∥BC,使AD=BC,在AD上取一點E,連結(jié)CE,點B關(guān)于CE的對稱點為B1,連結(jié)B1D,并延長B1D交BA的延長線于點F,延長CE交B1F于點G,連結(jié)BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點,使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)5、如圖,在中,AE平分,于點E,點F是BC的中點(1)如圖1,BE的延長線與AC邊相交于點D,求證:(2)如圖2,中,,求線段EF的長.-參考答案-一、單選題1、B【解析】【分析】設(shè)直線AF與BD的交點為G,由題意易得,則有,由折疊的性質(zhì)可知,由平行線的性質(zhì)可得,然后可得,進而問題可求解.【詳解】解:設(shè)直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質(zhì)可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質(zhì)及矩形的性質(zhì),熟練掌握折疊的性質(zhì)及矩形的性質(zhì)是解題的關(guān)鍵.2、A【解析】【分析】連接BP,通過菱形的周長為24,求出邊長,菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過面積法得出等量關(guān)系.3、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對邊相等是解題的關(guān)鍵.4、D【解析】【分析】當(dāng)為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時連接,先利用勾股定理計算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時,只能得到,所以點A、F、C共線,即沿折疊,使點B落在對角線上的點F處,則,,可計算出然后利用勾股定理求解即可;②當(dāng)點F落在邊上時.此時為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時,如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點B落在點F處,∴,BE=EF,當(dāng)為直角三角形時,只能得到,∴∴點A、F、C共線,即△ABE沿折疊,使點B落在對角線上的點F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點F落在邊上時,如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.5、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.二、填空題1、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運用等腰三角形的判定定理是解題的關(guān)鍵.2、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.3、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對稱,推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對稱,即C關(guān)于BD的對稱點是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點睛】本題考查了正方形的性質(zhì),軸對稱-最短路徑問題,等邊三角形的性質(zhì)等知識點的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.5、或或【解析】【分析】分三種情況:當(dāng)時,當(dāng)時,當(dāng)時,利用等腰三角形的性質(zhì)和正方形的性質(zhì)進行求解即可.【詳解】解:如圖1,當(dāng)時,∵四邊形ABCD是正方形,∴∠B=∠D=90°,BC=DC,∴,∴則,∵E是AB的中點,∴∴;如圖2.當(dāng)點P與點D重合時,∵四邊形ABCD是正方形,∴AD=BC,∠A=∠B=90°,∵E是AB的中點,∴AE=BE,∴△ADE≌△BCE(SAS),∴即PE=CE,是等腰三角形.∴;如圖3.當(dāng)時,設(shè),則,在直角△PDC中,,在直角△AEP中,,則.解得,即.綜上所述,AP的長可能是1或2或.故答案為:1或2或.【點睛】本題主要考查了等腰三角形的性質(zhì),正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,解題的關(guān)鍵在于能夠熟練掌握等腰三角形的性質(zhì)和正方形的性質(zhì).三、解答題1、(1)是;(2)見解析;(3)至少需要3條對角線相等才能判定它是正五邊形,見解析【分析】(1)根據(jù)對角線相等的菱形是正方形,證明即可;(2)由SSS證明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出結(jié)論;(3)由SSS證明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS證明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四邊形ABCE內(nèi)角和為360°得出∠ABC+∠ECB=180°,證出AB∥CE,由平行線的性質(zhì)得出∠ABE=∠BEC,∠BAC=∠ACE,證出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出結(jié)論;【詳解】(1)解:結(jié)論:四邊形ABCD是正四邊形.理由:∵AB=BC=CD=DA,∴四邊形ABCD是菱形,∵AC=BD,∴四邊形ABCD是正方形.∴四邊形ABCD是正四邊形.故答案為:是.(2)證明:∵凸五邊形ABCDE的各條邊都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五邊形ABCDE是正五邊形;(3)解:結(jié)論:至少需要3條對角線相等才能判定它是正五邊形.若AC=BE=CE,五邊形ABCDE是正五邊形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四邊形ABCE內(nèi)角和為360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五邊形ABCDE是正五邊形;【點睛】本題是四邊形綜合題目,考查了正多邊形的判定、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識;本題綜合性強,有一定難度,證明三角形全等是解題的關(guān)鍵.2、(1)3秒后平行于軸;(2)或.【分析】(1)設(shè)秒后平行于軸,先求出的長,再根據(jù)矩形的判定與性質(zhì)可得,由此建立方程,解方程即可得;(2)分①點在點右側(cè),②點在點左側(cè)兩種情況,分別根據(jù)建立方程,解方程即可得.【詳解】解:(1),,設(shè)秒后平行于軸,,垂直于軸,垂直于軸,平行于軸,四邊形是矩形,,即,解得,即3秒后平行于軸;(2)由題意得:經(jīng)過秒后,,垂直于軸,點在直線上,且點的坐標(biāo)為,點的縱坐標(biāo)為4,①當(dāng)點在點右側(cè)時,,由得:,解得,,此時點的坐標(biāo)為;②當(dāng)點在點左側(cè)時,,由得:,解得,,此時點的坐標(biāo)為;綜上,點的坐標(biāo)為或.【點睛】本題考查了坐標(biāo)與圖形、矩形的判定與性質(zhì)等知識點,較難的是題(2),正確分兩種情況討論是解題關(guān)鍵.3、(1)見解析;(2)見解析;(3)見解析【分析】(1)如圖,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;(2)如圖,,,利用勾股定理逆定理即可得到△ABC是直角三角形;(3)如圖,,則,∠ABC=90°,即可得到四邊形ABCD是正方形,.【詳解】解:(1)如圖所示,AB=4,BC=3,,∴,∴△ABC是直角三角形;

(2)如圖所示,,∴,∴△ABC是直角三角形;

(3)如圖所示,,,∴,∴∠ABC=90°,∴四邊形ABCD是正方形,∴.

【點睛】本題主要考查了有理數(shù)與無理數(shù),正方形的判定,勾股定理和勾股定理的逆定理,熟知相關(guān)知識是解題的關(guān)鍵.4、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結(jié)BB1交CG于點M,交CD于點Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質(zhì)得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設(shè)BG交AD于點N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計算即可;(3)根據(jù)點G的位置不同分4種情況進行討論計算即可;【詳解】(1)證明:如圖1,連結(jié)BB1交CG于點M,交CD于點Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形ABCD是正方形,∵點B1與點B關(guān)于CE對稱,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如圖1,設(shè)BG交AD于點N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ?CM=BC?CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的長為4.(3)解:如圖1,由(2)得CM=2,GM=4,∴CG=2+4=6,如圖2,CH=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論