中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點題含答案詳解(研優(yōu)卷)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點題含答案詳解(研優(yōu)卷)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點題含答案詳解(研優(yōu)卷)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點題含答案詳解(研優(yōu)卷)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高頻難、易錯點題含答案詳解(研優(yōu)卷)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》高頻難、易錯點題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,點O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°2、如圖,拱橋可以近似地看作直徑為250m的圓弧,橋拱和路面之間用數(shù)根鋼索垂直相連,其正下方的路面AB長度為150m,那么這些鋼索中最長的一根的長度為()A.50m B.40m C.30m D.25m3、已知:如圖,PA,PB分別與⊙O相切于A,B點,C為⊙O上一點,∠ACB=65°,則∠APB等于()A.65° B.50° C.45° D.40°4、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.5、在平面直角坐標(biāo)系中,⊙O的半徑為2,點A(1,)與⊙O的位置關(guān)系是(

)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.2、如圖所示的網(wǎng)格由邊長為個單位長度的小正方形組成,點、、、在直角坐標(biāo)系中的坐標(biāo)分別為,,,則內(nèi)心的坐標(biāo)為______.3、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.4、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.5、如圖,在平面直角坐標(biāo)系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知直線交于A、B兩點,是的直徑,點C為上一點,且平分,過C作,垂足為D.(1)求證:是的切線;(2)若,的直徑為20,求的長度.2、如圖,已知AB是⊙O的直徑,C,D是⊙O上的點,OC∥BD,交AD于點E,連結(jié)BC.(1)求證:AE=ED;(2)若AB=10,∠CBD=36°,求的長.3、如圖,點C是射線上的動點,四邊形是矩形,對角線交于點O,的平分線交邊于點P,交射線于點F,點E在線段上(不與點P重合),連接,若.(1)證明:(2)點Q在線段上,連接、、,當(dāng)時,是否存在的情形?請說明理由.4、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.5、在平面直角坐標(biāo)系中,⊙C與x軸交于點A,B,且點B的坐標(biāo)為(8,0),與y軸相切于點D(0,4),過點A,B,D的拋物線的頂點為E.(1)求圓心C的坐標(biāo)與拋物線的解析式;(2)判斷直線AE與⊙C的位置關(guān)系,并說明理由;(3)若點M,N是直線y軸上的兩個動點(點M在點N的上方),且MN=1,請直接寫出的四邊形EAMN周長的最小值.-參考答案-一、單選題1、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.2、D【解析】【分析】設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,先由垂徑定理得AC=BC=AB=75m,再由勾股定理求出OC=100m,然后求出CD的長即可.【詳解】解:設(shè)圓弧的圓心為O,過O作OC⊥AB于C,交于D,連接OA,則OA=OD=×250=125(m),AC=BC=AB=×150=75(m),∴OC===100(m),∴CD=OD﹣OC=125﹣100=25(m),即這些鋼索中最長的一根為25m,故選:D.【考點】本題考查了垂徑定理和勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.3、B【解析】【分析】連接OA,OB.根據(jù)圓周角定理和四邊形內(nèi)角和定理求解即可.【詳解】連接OA,OB,∵PA、PB切⊙O于點A、B,∴∠PAO=∠PBO=90°,由圓周角定理知,∠AOB=2∠ACB=130°,∴∠APB=360°﹣∠PAO﹣∠PBO﹣∠AOB=360°﹣90°﹣90°﹣130°=50°.故選:B.【考點】本題考查了切線的性質(zhì)、圓周角定理、以及四邊形的內(nèi)角和為360度.4、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.5、A【解析】【分析】根據(jù)點A的坐標(biāo),求出OA=2,根據(jù)點與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點A在⊙O上.故選:A.【考點】本題考查了點和圓的位置關(guān)系,點和圓的位置關(guān)系是由點到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時,點在圓外;(2)當(dāng)時,點在圓上;(3)當(dāng)時,點在圓內(nèi).二、填空題1、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點.2、(2,3)【解析】【分析】根據(jù)A、B、C三點的坐標(biāo)建立如圖所示的坐標(biāo)系,計算出△ABC各邊的長度,易得該三角形是直角三角形,設(shè)BC的關(guān)系式為:y=kx+b,求出BC與x軸的交點G的坐標(biāo),證出點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,三角形的內(nèi)心在BD上,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到點M的坐標(biāo).【詳解】解:根據(jù)A、B、C三點的坐標(biāo)建立如圖所示的坐標(biāo)系,根據(jù)題意可得:AB=,AC=,BC=,∵,∴∠BAC=90°,設(shè)BC的關(guān)系式為:y=kx+b,代入B,C,可得,解得:,∴BC:,當(dāng)y=0時,x=3,即G(3,0),∴點A與點G關(guān)于BD對稱,射線BD是∠ABC的平分線,設(shè)點M為三角形的內(nèi)心,內(nèi)切圓的半徑為r,在BD上找一點M,過點M作ME⊥AB,過點M作MF⊥AC,且ME=MF=r,∵∠BAC=90°,∴四邊形MEAF為正方形,S△ABC=,解得:,即AE=EM=,∴BE=,∴BM=,∵B(-3,3),∴M(2,3),故答案為:(2,3).【考點】本題考查三角形內(nèi)心、平面直角坐標(biāo)系、一次函數(shù)的解析式、勾股定理和正方形的判定與性質(zhì)等相關(guān)知識點,把握內(nèi)心是三角形內(nèi)接圓的圓心這個概念,靈活運用各種知識求解即可.3、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點為E,∵PA、PB分別是⊙O的切線,且切點為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.4、8.【解析】【分析】連結(jié)OA,OB,點是的中點,半徑交弦于點,根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結(jié)OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關(guān)鍵.5、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.三、解答題1、(1)證明見解析(2)【解析】【分析】(1)連接OC,根據(jù)題意可證得∠CAD+∠DCA=90°,再根據(jù)角平分線的性質(zhì),得∠DCO=90°,則CD為O的切線;(2)過O作OF⊥AB,則∠OCD=∠CDA=∠OFD=90°,得四邊形DCOF為矩形,設(shè)AD=x,在Rt△AOF中,由勾股定理得,從而求得x的值,由勾股定理求出AF的長,再求AB的長.(1)證明:連接,∵,∴,∵平分,∴,∴,∴,∵,∴,又∵為半徑∴是的切線.(2)解:過O作,垂足為F,∵,∴四邊形為矩形,∴,設(shè),∵,則,∵的直徑為20,∴,∴,在中,由勾股定理得,即,解得:(不合題意,舍去),∴,∴,∴,∵,由垂徑定理知,F(xiàn)為的中點,∴.【考點】本題考查了切線的證明,矩形的判定和性質(zhì)以及勾股定理,掌握切線的定義和證明方法是解題的關(guān)鍵.2、(1)證明見解析;(2)【解析】【詳解】分析:(1)根據(jù)平行線的性質(zhì)得出∠AEO=90°,再利用垂徑定理證明即可;(2)根據(jù)弧長公式解答即可.詳證明:(1)∵AB是⊙O的直徑,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴=.點睛:此題考查弧長公式,關(guān)鍵是根據(jù)弧長公式和垂徑定理解答.3、(1)見解析(2)不存在的情形,理由見解析【解析】【分析】(1)根據(jù)矩形的性質(zhì)可得∠DAF=∠CFA,從而得到∠CAF=∠CFA,進而AC=CF,再由OB=OC,可得∠OBC=∠OCB,然后根據(jù),可得∠ACF=2∠ECF,即可求證;(2)先假設(shè)DQ=PC,可先證得點A、C、E、D四點共圓,從而得到∠DAE=∠DCE,∠CAE=∠CDE,再由AF平分∠CAD,可得DE=CE,進而得到點E在CD的垂直平分線上,再由,可得∠AQC=∠CPQ,從而得到CP=CQ,CQ=DQ,進而得到點Q在CD的垂直平分線上,得到AF∥BC,AF交射線于點F相矛盾,即可求解.(1)證明:在矩形ABCD中,AD∥BC,OB=OC,∴∠DAF=∠CFA,∵AF平分∠CAD,∴∠DAF=∠CAF,∴∠CAF=∠CFA,∴AC=CF,∵OB=OC,∴∠OBC=∠OCB,∵,∴2∠ECF+∠OCB=180°,∵∠OCB+∠ACF=180°,∴∠ACF=2∠ECF,∴∠ACE=∠FCE,∴AE=EF;(2)解:不存在PC=DQ,理由如下:假設(shè)DQ=PC,∵四邊形ABCD是矩形,∴∠ADC=90°,由(1)得:AC=CF,AE=EF,∴CE⊥AF,即∠AEC=90°,∴∠AEC=∠ADC=90°,∴點A、C、E、D四點共圓,∴∠DAE=∠DCE,∠CAE=∠CDE,∵AF平分∠CAD,∴∠CAE=∠DAE=∠DCE=∠EDC,∴DE=CE,∴點E在CD的垂直平分線上,∵,∠CPQ=∠EDC+∠DEA,∴∠AQC=∠CPQ,∴CP=CQ,∵CP=DQ,∴CQ=DQ,∴點Q在CD的垂直平分線上,∴EQ⊥CD,即AF⊥CD,∵BC⊥CD,∴AF∥BC,AF交射線于點F相矛盾,∴假設(shè)不成立,原結(jié)論成立,即當(dāng)時,不存在的情形.【考點】本題主要考查了矩形的性質(zhì),等腰三角形的判定和性質(zhì),四點共圓問題,反證法,線段垂直平分線的判定,熟練掌握相關(guān)知識點,利用四點共圓解決問題是解題的關(guān)鍵.4、證明見解析.【解析】【分析】根據(jù)AB=CD,得出,進而得出,即可解答.【詳解】證明:∵AB,CD是⊙O的兩條弦,且AB=CD,∴,∴,∴,∴AD=BC.【考點】此題考查圓心角、弧、弦的關(guān)系,關(guān)鍵是利用三者的關(guān)系解答.5、(1)C(5,4),yx2x+4;(2)AE是⊙C的切線,理由見解析;(3).【解析】【分析】(1)如圖1,連接CD,CB,過點C作于M.設(shè)⊙C的半徑為r.在Rt△BCM中,利用勾股定理求出半徑,可得點C的坐標(biāo),根據(jù)函數(shù)的對稱性,得,用待定系數(shù)法即可求解.(2)結(jié)論:AE是OC的切線.連接AC,CE,由拋物線的解析式推出點E的坐標(biāo),求出AC,AE,CE,利用勾股定理的逆定理證明即可解決問題.(3)由四邊形EAMN周長,可得當(dāng)有最小值時,四邊形周長有最小值,即當(dāng)點M在線段上時,的最小值為,即可求解.(1)解:(1)如圖,連接CD,CB,過點C作CM⊥AB于M.設(shè)⊙C的半徑為r,∵與y軸相切于點D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論