重難點解析人教版8年級數(shù)學上冊《軸對稱》專項攻克試卷(詳解版)_第1頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》專項攻克試卷(詳解版)_第2頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》專項攻克試卷(詳解版)_第3頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》專項攻克試卷(詳解版)_第4頁
重難點解析人教版8年級數(shù)學上冊《軸對稱》專項攻克試卷(詳解版)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》專項攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,等邊的頂點,,規(guī)定把等邊“先沿軸翻折,再向左平移1個單位”為一次變換,這樣連續(xù)經過2021次變換后,頂點C的坐標為(

)A. B. C. D.2、2020年初,新冠狀病毒引發(fā)肺炎疫情,全國多家醫(yī)院紛紛派醫(yī)護人員馳援武漢.下面是四家醫(yī)院標志得圖案,其中是軸對稱圖形得是(

)A. B.C. D.3、以下四大通訊運營商的企業(yè)圖標中,是軸對稱圖形的是()A. B. C. D.4、在中,,,,則的長度為(

)A. B. C. D.5、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,則的度數(shù)為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平面直角坐標系中,長方形OABC的邊OA在x軸上,OC在y軸上,OA=1,OC=2,對角線AC的垂直平分線交AB于點E,交AC于點D.若y軸上有一點P(不與點C重合),能使△AEP是以為AE為腰的等腰三角形,則點P的坐標為____.2、點A(5,﹣2)關于x軸對稱的點的坐標為___.3、如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連接PC,若△ABC的面積為2cm2,則△BPC的面積為___cm2.4、如圖,將一張長方形紙條折疊,若,則的度數(shù)為__________.5、如圖,△ABC中,AB=AC,D、E分別在CA、BA的延長線上,連接BD、CE,且∠D+∠E=180°,若BD=6,則CE的長為__.三、解答題(5小題,每小題10分,共計50分)1、如圖,點P是∠AOB外的一點,點Q與P關于OA對稱,點R與P關于OB對稱,直線QR分別交OA、OB于點M、N,若PM=PN=4,MN=5.(1)求線段QM、QN的長;(2)求線段QR的長.2、如圖,在平面直角坐標系中,A(-2,4),B(-3,1),C(1,-2).(1)在圖中作出△ABC關于y軸的對稱圖形△A′B′C′;(2)寫出點A′、B′、C′的坐標;(3)連接OB、OB′,請直接回答:①△OAB的面積是多少?②△OBC與△OB′C′這兩個圖形是否成軸對稱.3、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.4、如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.(1)求∠F的度數(shù);(2)若CD=2,求DF的長.5、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O,限用無刻度直尺完成以下作圖:(1)在圖1中作線段BC的中點P;(2)在圖2中,在OB、OC上分別取點E、F,使EF∥BC.-參考答案-一、單選題1、D【解析】【分析】先求出點C坐標,第一次變換,根據(jù)軸對稱判斷出點C變換后在x軸下方然后求出點C縱坐標,再根據(jù)平移的距離求出點C變換后的橫坐標,最后寫出第一次變換后點C坐標,同理可以求出第二次變換后點C坐標,以此類推可求出第n次變化后點C坐標.【詳解】∵△ABC是等邊三角形AB=3-1=2∴點C到x軸的距離為1+,橫坐標為2∴C(2,)由題意可得:第1次變換后點C的坐標變?yōu)?2-1,),即(1,),第2次變換后點C的坐標變?yōu)?2-2,),即(0,)第3次變換后點C的坐標變?yōu)?2-3,),即(-1,)第n次變換后點C的坐標變?yōu)?2-n,)(n為奇數(shù))或(2-n,)(n為偶數(shù)),∴連續(xù)經過2021次變換后,等邊的頂點的坐標為(-2019,),故選:D.【考點】本題考查了利用軸對稱變換(即翻折)和平移的特點求解點的坐標,在求解過程中找到規(guī)律是關鍵.2、B【解析】【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項B能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是做軸對稱圖形;選項A、C、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是做軸對稱圖形;故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.3、D【解析】【分析】根據(jù)軸對稱圖形的定義(在平面內沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形)進行判斷即可得.【詳解】解:根據(jù)軸對稱圖形的定義判斷可得:只有D選項符合題意,故選:D.【考點】題目主要考查軸對稱圖形的判斷,理解軸對稱圖形的定義是解題關鍵.4、C【解析】【分析】根據(jù)直角三角形的性質30°所對的直角邊等于斜邊的一半求解即可.【詳解】∵在Rt△ABC中,,,∴,∴∵,∴3BC=12cm.∴BC=4cm∴AB=8cm故選:C【考點】本題考查了含30度角的直角三角形的性質,掌握含30度角的直角三角形的性質是解題的關鍵.5、B【解析】【分析】先由等腰三角形的性質和三角形的內角和定理求出∠BCA,進而求得∠ACD,由作圖痕跡可知CE為∠ACD的平分線,利用角平分線定義求解即可.【詳解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作圖痕跡可知CE為∠ACD的平分線,∴,故選:B.【考點】本題考查了等腰三角形的性質、三角形的內角和定理、角平分線的定義和作法,熟練掌握等腰三角形的性質以及角平分線的尺規(guī)作圖法是解答的關鍵.二、填空題1、,或【解析】【分析】設AE=m,根據(jù)勾股定理求出m的值,得到點E(1,),設點P坐標為(0,y),根據(jù)勾股定理列出方程,即可得到答案.【詳解】∵對角線AC的垂直平分線交AB于點E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴設AE=m,則BE=2-m,CE=m,∴在Rt?BCE中,BE2+BC2=CE2,即:(2-m)2+12=m2,解得:m=,∴E(1,),設點P坐標為(0,y),∵△AEP是以為AE為腰的等腰三角形,當AP=AE,則(1-0)2+(0-y)2=(1-1)2+(0-)2,解得:y=,當EP=AE,則(1-0)2+(-y)2=(1-1)2+(0-)2,解得:y=,∴點P的坐標為,,,故答案是:,,.【考點】本題主要考查等腰三角形的定義,勾股定理,矩形的性質,垂直平分線的性質,掌握勾股定理,列出方程,是解題的關鍵.2、(5,2)【解析】【分析】根據(jù)關于x軸對稱的點的橫坐標不變,縱坐標互為相反數(shù)解答.【詳解】解:點A(5,-2)關于x軸對稱的點的坐標是(5,2).故答案為:(5,2).【考點】本題考查了關于原點對稱的點的坐標,關于x軸、y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).3、1【解析】【分析】根據(jù)等腰三角形三線合一的性質即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案.【詳解】∵BD=BA,BP是∠ABC的角平分線,∴,∴和是等底同高的三角形,和是等底同高的三角形,∴,.∵,,∴.故答案為:1.【考點】本題考查等腰三角形的性質.掌握等腰三角形“三線合一”是解答本題的關鍵.4、130°【解析】【分析】延長DC到點E,如圖,根據(jù)平行線的性質可得∠BCE=∠ABC=25°,根據(jù)折疊的性質可得∠ACB=∠BCE=25°,進一步即可求出答案.【詳解】解:延長DC到點E,如圖:∵AB∥CD,∴∠BCE=∠ABC=25°,由折疊可得:∠ACB=∠BCE=25°,∵∠BCE+∠ACB+∠ACD=180°,∴∠ACD=180°﹣∠BCE﹣∠ACB=180°﹣25°﹣25°=130°,故答案為:130°.【考點】此題主要考查了平行線的性質和折疊的性質,正確添加輔助線、熟練掌握平行線的性質是解決問題的關鍵.5、6【解析】【分析】在AD上截取AF=AE,連接BF,易得△ABF≌△ACE,根據(jù)全等三角形的性質可得∠BFA=∠E,CE=BF,則有∠D=∠DFB,然后根據(jù)等腰三角形的性質可求解.【詳解】解:在AD上截取AF=AE,連接BF,如圖所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,三、解答題1、(1)4,1;(2)5【解析】【分析】(1)利用軸對稱的性質求出MQ即可解決問題;(2)利用軸對稱的性質求出NR即可解決問題.【詳解】(1)∵P,Q關于OA對稱,∴OA垂直平分線段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R關于OB對稱,∴OB垂直平分線段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.【考點】本題考查軸對稱的性質,解題的關鍵是理解題意,熟練掌握軸對稱的性質屬于中考??碱}型.2、(1)見解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC與△OB′C′這兩個圖形關于y軸成軸對稱.【解析】【分析】(1)先確定A、B、C關于y軸的對稱點A′、B′、C′,然后再順次連接即可;(2)直接根據(jù)圖形讀出A′、B′、C′的坐標即可;(3)①運用△OAB所在的矩形面積減去三個三角形的面積即可;②根據(jù)圖形看△OBC與△OB′C′是否有對稱軸即可解答.【詳解】解:(1)如圖;△A′B′C′即為所求;(2)如圖可得:A′(2,4).B′(3,1).C′(-1,-2);(3)①△OAB的面積為:4×3-×3×1-×4×2-×3×1=5;②∵△OBC與△OB′C′這兩個圖形關于y軸成軸對稱∴△OBC與△OB′C′這兩個圖形關于y軸成軸對稱.【考點】本題主要考查了軸對稱變換和不規(guī)則三角形面積的求法,作出△ABC關于y軸的對稱圖形△A′B′C′以及運用拼湊法求不規(guī)則三角形的面積成為解答本題的關鍵.3、證明見解析.【解析】【分析】先根據(jù)等腰三角形的性質可得,再根據(jù)三角形的外角性質可得,然后根據(jù)角平分線的定義得,最后根據(jù)三角形全等的判定定理與性質即可得證.【詳解】∵,∴,∴,∵AF是的平分線,∴,∵E是AC的中點,∴,在和中,,∴,∴.【考點】本題考查了等腰三角形的性質、角平分線的定義、三角形全等的判定定理與性質等知識點,熟練掌握三角形全等的判定方法是解題關鍵.4、(1)30°;(2)4.【解析】【分析】(1)根據(jù)平行線的性質可得∠EDC=∠B=60°,根據(jù)三角形內角和定理即可求解;(2)易證△EDC是等邊三角形,再根據(jù)直角三角形的性質即可求解.【詳解】(1)∵△ABC是等邊三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等邊三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【考點】本題主要考查了運用三角形的內角和算出角度,并能判定等邊三角形,會運用含30°角的直角三角形的性質.5、(1)見解析;(2)見解析.【解析】【分析】(1)延長BA和CD,它們相交于點Q,然后延長QO交BC于P,則PB=PC,根據(jù)線段垂直平分線的逆定理可證明;(2)連結AP交OB于E,連結DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據(jù)三角形內角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.【詳解】解:(1)如圖1,點P為所作,理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC,OB=OC∴Q,O在BC的垂直平分線上,∴延長

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論