重難點解析冀教版8年級下冊期末試題(各地真題)附答案詳解_第1頁
重難點解析冀教版8年級下冊期末試題(各地真題)附答案詳解_第2頁
重難點解析冀教版8年級下冊期末試題(各地真題)附答案詳解_第3頁
重難點解析冀教版8年級下冊期末試題(各地真題)附答案詳解_第4頁
重難點解析冀教版8年級下冊期末試題(各地真題)附答案詳解_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

冀教版8年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等邊三角形,下列結(jié)論中:①AB⊥AC;②四邊形AEFD是平行四邊形;③∠DFE=150°;④S四邊形AEFD=8.錯誤的個數(shù)是()A.1個 B.2個 C.3個 D.4個2、下列說法正確的是()A.只有正多邊形的外角和為360°B.任意兩邊對應(yīng)相等的兩個直角三角形全等C.等腰三角形有兩條對稱軸D.如果兩個三角形一模一樣,那么它們形成了軸對稱圖形3、如圖所示,直線分別與軸、軸交于點、,以線段為邊,在第二象限內(nèi)作等腰直角,,則過、兩點直線的解析式為()A. B. C. D.4、如圖,在矩形ABCD中,動點P從點A出發(fā),沿A→B→C運動,設(shè),點D到直線PA的距離為y,且y關(guān)于x的函數(shù)圖象如圖所示,則當(dāng)和的面積相等時,y的值為()A. B. C. D.5、如圖,四邊形ABCD是平行四邊形,過點A作AM⊥BC于點M,交BD于點E,過點C作CN⊥AD于點N,交BD于點F,連接CE,當(dāng)EA=EC,且點M為BC的中點時,AB:AE的值為()A.2 B. C. D.6、已知一次函數(shù)y=k1x+b1和一次函數(shù)y1=k2x+b2的自變量x與因變量y1,y2的部分對應(yīng)數(shù)值如表所示,則關(guān)于x、y的二元一次方程組的解為()x…﹣2﹣1012…y1…﹣10123…y2…﹣5﹣3﹣113…A. B. C. D.7、在平面直角坐標(biāo)系中,所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖,在中,∠ACB=90°,DEBC,DE=AC,若AC=2,AD=DB=4,∠ADC=30°.以下四個結(jié)論:①四邊形ACED是平行四邊形;②∠ABE=;③AB=;④點F是AD中點,點G、H分別是線段BC、AB上的動點,則FG+GH的最小值為.正確的是_____.(填序號)2、在四邊形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一點,且BM=4cm,點E從A出發(fā)以1cm/s的速度向D運動,點F從點B出發(fā)以2cm/s的速度向點C運動,當(dāng)其中一點到達終點,而另一點也隨之停止,設(shè)運動時間為t,當(dāng)t的值為_____時,以A、M、E、F為頂點的四邊形是平行四邊形.3、直線y=2x-4與兩坐標(biāo)軸圍成的三角形面積為___________________.4、已知,,在x軸找一點P,使的值最小,則點P的坐標(biāo)為_______.5、在平面直角坐標(biāo)系中,點P的坐標(biāo)為(a,b),點P的“變換點”P'的坐標(biāo)定義如下:當(dāng)a≥b時,P'點坐標(biāo)為(a,-b);當(dāng)a<b時,P'點坐標(biāo)為(a+4,b-2).線段l:y=-0.5x+3(-2≤x≤6)上所有點按上述“變換點”組成一個新的圖形,若直線y=kx+5與組成的新的圖形有兩個交點,則k的取值范圍是______.6、點關(guān)于y軸的對稱點的坐標(biāo)為________.7、如圖,正方形的對角線、相交于點O,等邊繞點O旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當(dāng)時,的度數(shù)為____________.8、已知一次函數(shù)的圖象(如圖),則不等式<0的解集是___________三、解答題(7小題,每小題10分,共計70分)1、【問題情境】如圖1,在中,,垂足為D,我們可以得到如下正確結(jié)論:①;②;③,這些結(jié)論是由古??嶂麛?shù)學(xué)家歐幾里得在《幾何原本》最先提出的,我們稱之為“射影定理”,又稱“歐幾里德定理”.(1)請證明“射影定理”中的結(jié)論③.(2)【結(jié)論運用】如圖2,正方形的邊長為6,點O是對角線、的交點,點E在上,過點C作,垂足為F,連接.①求證:.②若,求的長.2、已知:線段m.求作:矩形ABCD,使矩形寬AB=m,對角線AC=m.3、甲、乙兩車從M地出發(fā),沿同一路線駛向N地,甲車先出發(fā)勻速駛向N地,30分鐘后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時,由于滿載貨物,為了行駛安全,速度減少了40km/h,結(jié)果兩車同時到達N地,甲乙兩車距N地的路程y(km)與乙車行駛時間x(h)(1)a=,甲的速度是km/h.(2)求線段AD對應(yīng)的函數(shù)表達式.(3)直接寫出甲出發(fā)多長時間,甲乙兩車相距10km.4、如圖1,在平面直角坐標(biāo)系中存在矩形ABCO,點A(﹣a,0)、點B(﹣a.b),且a、b滿足:b12.(1)求A、B點坐標(biāo);(2)作∠OAB的角平分線交y軸于D,AD的中點為E,連接BE,作EF⊥BE交x軸于F,求EF的長;(3)如圖2,將矩形ABCO向左推倒得到矩形A'B'C'O',使A與A'重合,B'落在x軸上.現(xiàn)在將矩形A'B'C'O'沿射線AD以1個單位/秒平移,設(shè)平移時間為t,用t表示平移過程中矩形ABCD與矩形A'B'C'O'重合部分的面積.5、平面直角坐標(biāo)系中有點、,連接AB,以AB為直角邊在第一象限內(nèi)作等腰直角三角形,則點C的坐標(biāo)是_________.6、為豐富學(xué)生的課余生活,某學(xué)校準(zhǔn)備組織學(xué)生舉行各類球賽活動(每個學(xué)生只能參加一種球類活動),將全校學(xué)生參加球類活動的調(diào)查結(jié)果制成如圖所示的扇形統(tǒng)計圖.其中參加乒乓球的學(xué)生有320人.(1)求全校一共有多少名學(xué)生?(2)求參加足球的學(xué)生的人數(shù)比參加籃球的學(xué)生的人數(shù)多了幾分之幾?7、如圖,在平面直角坐標(biāo)系中,A(-1,5),B(-1,0),C(-4,3).(1)作出ABC關(guān)于y軸的對稱圖形;(2)寫出點的坐標(biāo);(3)若坐標(biāo)軸上存在一點E,使EBC是以BC邊為底邊的等腰三角形,直接寫出點E的坐標(biāo).(4)在y軸上找一點P,使PA+PC的長最短.-參考答案-一、單選題1、A【解析】【分析】利用勾股定理逆定理證得△ABC是直角三角形,由此判斷①;證明△ABC≌△DBF得到DF=AE,同理可證:△ABC≌△EFC,得到EF=AD,由此判斷②;由②可判斷③;過A作AG⊥DF于G,求出AG即可求出S?AEFD,判斷④.【詳解】解:∵AB=3,AC=4,32+42=52,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∴AB⊥AC,故①正確;∵△ABD,△ACE都是等邊三角形,∴∠DAB=∠EAC=60°,∴∠DAE=150°,∵△ABD和△FBC都是等邊三角形,∴BD=BA,BF=BC,∴∠DBF=∠ABC,在△ABC與△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可證:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四邊形AEFD是平行四邊形,故②正確;∴∠DFE=∠DAE=150°,故③正確;過A作AG⊥DF于G,如圖所示:則∠AGD=90°,∵四邊形AEFD是平行四邊形,∴∠FDA=180°﹣∠DFE=180°﹣150°=30°,∴AG=AD=,∴S?AEFD=DF?AG=4×=6;故④錯誤;∴錯誤的個數(shù)是1個,故選:A..【點睛】此題考查了等邊三角形的性質(zhì),勾股定理的逆定理,全等三角形的判定及性質(zhì),平行四邊形的判定及性質(zhì),直角三角形的30度角的性質(zhì),熟練掌握各知識點是解題的關(guān)鍵.2、B【解析】【分析】選項A根據(jù)多邊形的外角和定義判斷即可;選項B根據(jù)三角形全等的判定方法判斷即可;選項C根據(jù)軸對稱圖形的定義判斷即可;選項D根據(jù)軸對稱的性質(zhì)判斷即可.【詳解】解:A.所有多邊形的外角和為,故本選項不合題意;B.任意兩邊對應(yīng)相等的兩個直角三角形全等,說法正確,故本項符合題意;C.等腰三角形有1條對稱軸,故本選項不合題意;D.如果兩個三角形一模一樣,那么它們不一定形成軸對稱圖形,故本選項不合題意;故選:B.【點睛】此題主要考查了多邊形的外角和,軸對稱的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定,解題的關(guān)鍵是掌握軸對稱圖形的概念.3、B【解析】【分析】過作軸,可證得,從而得到,,可得到再由,,即可求解.【詳解】解:過作軸,則,對于直線,令,得到,即,,令,得到,即,,,為等腰直角三角形,即,,,,在和中,,,,,即,,設(shè)直線的解析式為,,b=2?5k+b=3,解得.過、兩點的直線對應(yīng)的函數(shù)表達式是.故選:B【點睛】本題主要考查了求一次函數(shù)解析式,一次函數(shù)的圖象和性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),熟練掌握相關(guān)知識點,并利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.4、D【解析】【分析】先結(jié)合圖象分析出矩形AD和AB邊長分別為4和3,當(dāng)△PCD和△PAB的面積相等時可知P點為BC中點,利用面積相等求解y值.【詳解】解:當(dāng)P點在AB上運動時,D點到AP的距離不變始終是AD長,從圖象可以看出AD=4,當(dāng)P點到達B點時,從圖象看出x=3,即AB=3.當(dāng)△PCD和△PAB的面積相等時,P點在BC中點處,此時△ADP面積為,在Rt△ABP中,,由面積相等可知:,解得,故選:D.【點睛】本題主要考查了函數(shù)圖形的認識,分析圖象找到對應(yīng)的矩形的邊長,解決動點問題就是“動中找靜”,結(jié)合圖象找到“折點處的數(shù)據(jù)真正含義”便可解決問題.5、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)、垂直的定義、平行線的判定定理可以推知AE∥CF;然后由全等三角形的判定定理ASA推知△ADE≌△CBF;最后根據(jù)全等三角形的對應(yīng)邊相等知AE=CF,所以對邊平行且相等的四邊形是平行四邊形;連接AC交BF于點O,根據(jù)EA=EC推知?ABCD是菱形,根據(jù)菱形的鄰邊相等知AB=BC;然后結(jié)合已知條件“M是BC的中點,AM⊥BC”證得△ADE≌△CBF(ASA),所以AE=CF,從而證得△ABC是正三角形;最后在Rt△BCF中,求得CF:BC=,利用等量代換知(AE=CF,AB=BC)AB:AE=.【詳解】解:連接AC,∵四邊形ABCD是平行四邊形,∴BC∥AD;∴∠ADE=∠CBD,∵AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∴AM∥CN,∴AE∥CF;∴四邊形AECF為平行四邊形,∵EA=EC,∴?AECF是菱形,∴AC⊥BD,∴平行四邊形ABCD是菱形,∴AB=BC,∵M是BC的中點,AM⊥BC,∴AB=AC,∴△ABC為等邊三角形,∴∠ABC=60°,∠CBD=30°;在Rt△BCF中,CF:BC=,又∵AE=CF,AB=BC,∴AB:AE=.故選:B.【點睛】本題綜合考查了全等三角形的判定與性質(zhì)、菱形的判定與性質(zhì)以及等邊三角形的判定與性質(zhì)等知識點,證得?ABCD是菱形是解題的難點.6、C【解析】【分析】利用方程組的解就是兩個相應(yīng)的一次函數(shù)圖象的交點坐標(biāo)解決問題.【詳解】解:由表格可知,一次函數(shù)y1=k1x+b1和一次函數(shù)y2=k2x+b2的圖象都經(jīng)過點(2,3),∴一次函數(shù)y1=k1x與y=k2x+b的圖象的交點坐標(biāo)為(2,3),∴關(guān)于x,y的二元一次方程組的解為.故選:C.【點睛】本題考查了一次函數(shù)圖像交點坐標(biāo)與方程組解的關(guān)系:對于函數(shù)y1=k1x+b1,y2=k2x+b2,其圖象的交點坐標(biāo)(x,y)中x,y的值是方程組的解.7、D【解析】【分析】先判斷出點的橫縱坐標(biāo)的符號,進而判斷點所在的象限.【詳解】解:∵點的橫坐標(biāo)3>0,縱坐標(biāo)-4<0,∴點P(3,-4)在第四象限.故選:D.【點睛】本題考查了平面直角坐標(biāo)系中各個象限的點的坐標(biāo)的符號特點.四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空題1、①③④【解析】【分析】證明,結(jié)合DE=AC,可判定結(jié)論①;假設(shè)∠ABE=,在中,根據(jù)勾股定理得到,則假設(shè)不成立,可判斷結(jié)論②;在中和中,利用勾股定理可求出AB的值,即可判斷結(jié)論③;作點F關(guān)于BC對稱的點F’,作于點H,與BC相交于點G,則,,根據(jù)“直線外一點到直線的距離,垂線段最短”可知,此時FG+GH有最小值.通過勾股定理分別求得FG、GH的值,相加即可判斷結(jié)論④.【詳解】解:∵∠ACB=90°,DEBC,∴∠CDE=∠ACB=90°,∴又∵DE=AC,∴四邊形ACED是平行四邊形;故結(jié)論①正確.∵AD=DB=4,∠ADC=30°,∴∠ABC=∠DAB=,假設(shè)∠ABE=,則,∴在中,,∴,∴假設(shè)不成立;故結(jié)論②錯誤.在中,,,∴,∴∴在中,,,∴,即AB=;故結(jié)論③正確.如圖所示,作點F關(guān)于BC對稱的點F’,作于點H,與BC相交于點G,則,,根據(jù)“直線外一點到直線的距離,垂線段最短”可知,此時FG+GH有最小值.連接AG,與BC相交于點M,∵,∠ABC=,∴,∴,∵四邊形ACED是平行四邊形,∴,∴,∴又∵點F是AD中點,點F與點F’關(guān)于BC對稱,AD=4,∴,∴,∴,∴為等腰直角三角形,∴,,∴,又∵∠DAB=,∴,∴在中,,∵點F是AD中點,點F與點F’關(guān)于BC對稱,,∴,,∴,∵,∴,∴在中,,∴,即FG+GH的最小值為;故結(jié)論④正確.故答案為:①③④.【點睛】本題考查勾股定理的應(yīng)用.其中涉及平行線的判定,平行四邊形的判定和性質(zhì),直角三角形中角所對的直角邊等于斜邊的一半,等腰直角三角形的判定和性質(zhì),“一定兩動”求線段最小值等問題.綜合性較強.2、4s或s【解析】【分析】分兩種情況:①當(dāng)點F在線段BM上,即0≤t<2,②當(dāng)F在線段CM上,即2≤t≤5,列方程求解.【詳解】解:①當(dāng)點F在線段BM上,即0≤t<2,以A、M、E、F為頂點的四邊形是平行四邊形,則有t=4﹣2t,解得t=,②當(dāng)F在線段CM上,即2≤t≤5,以A、M、E、F為頂點的四邊形是平行四邊形,則有t=2t﹣4,解得t=4,綜上所述,t=4或,以A、M、E、F為頂點的四邊形是平行四邊形,故答案為:4s或s.【點睛】此題考查了動點問題,一元一次方程與動點問題,平行四邊形的定義,熟記平行四邊形的定義是解題的關(guān)鍵.3、【解析】【分析】畫出一次函數(shù)的圖象,再求解一次函數(shù)與坐標(biāo)軸的交點的坐標(biāo),再利用三角形的面積公式進行計算即可.【詳解】解:如圖,令則令則解得故答案為:4【點睛】本題考查的是一次函數(shù)與坐標(biāo)軸的交點坐標(biāo),一次函數(shù)與坐標(biāo)軸圍成的三角形的面積,利用數(shù)形結(jié)合的方法解題是解本題的關(guān)鍵.4、【解析】【分析】根據(jù)題意求出A點關(guān)于y軸的對稱點,連接,交x軸于點P,則P即為所求點,用待定系數(shù)法求出過兩點的直線解析式,求出此解析式與x軸的交點坐標(biāo)即可.【詳解】解:作點A關(guān)于y軸的對稱點,連接,設(shè)過的直線解析式為,把,,則解得:,,故此直線的解析式為:,當(dāng)時,,即點P的坐標(biāo)為.故答案為:.【點睛】本題考查的是最短線路問題及用待定系數(shù)法求一次函數(shù)的解析式,熟知軸對稱的性質(zhì)及一次函數(shù)的相關(guān)知識是解答此題的關(guān)鍵.5、【解析】【分析】先求當(dāng)a=b時,x=-0.5x+3,求出分界點(2,2),然后確定分段函數(shù)為y=0.5x-3(2≤x≤6)和y=-0.5x+3(2≤x<6),根據(jù)直線y=kx+5與組成的新的圖形有兩個交點,得出點(2,2)和點(6,0)在直角y=kx+5上,得出k=-和k=,列出不等式即可.【詳解】解:當(dāng)a=b時,x=-0.5x+3,解得x=2,分界點為(2,2),∴線段l:y=-0.5x+3(2≤x≤6)上點變?yōu)閥=0.5x-3(2≤x≤6),線段l:y=-0.5x+3(-2≤x<2)上點用過平移變?yōu)閥=-0.5x+3(2≤x<6),∵若直線y=kx+5與組成的新的圖形有兩個交點,∴點(2,2)和點(6,0)在直角y=kx+5上,∴點(2,2)在y=kx+5上,得2=2k+5,解得k=-,點(6,0)在直角y=kx+5上,得6k+5=0,解得k=,直線y=kx+5與組成的新的圖形有兩個交點,則k的取值范圍是.故答案為.【點睛】本題考查新定義“變換點”,根據(jù)新定義確定分段函數(shù),利用圖像找出滿足條件的點坐標(biāo),求函數(shù)值,列不等式,掌握新定義“變換點”,根據(jù)新定義確定分段函數(shù),利用圖像找出滿足條件的點坐標(biāo),求函數(shù)值,列不等式是解題關(guān)鍵.6、【解析】【分析】根據(jù)關(guān)于y軸對稱的兩個點,縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)求解即可【詳解】解:點關(guān)于y軸的對稱點的坐標(biāo)為故答案為:【點睛】本題考查了關(guān)于坐標(biāo)軸對稱的點的特征,掌握關(guān)于y軸對稱的兩個點,縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)是解題的關(guān)鍵.7、或【解析】【分析】分兩種情況:①根據(jù)正方形與等邊三角形的性質(zhì)得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判斷△ODE≌△OCF,則∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可證得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.【詳解】解:情況1,如下圖:∵四邊形ABCD是正方形,∴OD=OC,∠AOD=∠COD=90°,∵△OEF是等邊三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOF=∠COE,∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,∴∠AOF=∠AOD+∠DOF=90°+15°=105°;情況2,如下圖:連接DE、CF,∵四邊形ABCD為正方形,∴OC=OD,∠AOD=∠COB=90°,∵△OEF為等邊三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,∴∠BOF=∠COF-∠COB=105°-90°=15°,∴∠AOF=∠AOB-∠BOF=90°-15°=75°,故答案為:105°或75°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了正方形與等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),做題的關(guān)鍵是注意兩種情況和證三角形全等.8、x<1【解析】【分析】根據(jù)一次函數(shù)與一元一次不等式的關(guān)系即可求出答案.【詳解】解:∵y=kx+b,kx+b<0,∴y<0,由圖象可知:x<1,故答案為:x<1.【點睛】本題考查一次函數(shù)與一元一次不等式,解題的關(guān)鍵是正確理解一次函數(shù)與一元一次不等式的關(guān)系,本題屬于基礎(chǔ)題型.三、解答題1、(1)見解析;(2)①見解析;②.【解析】【分析】(1)由AA證明,再由相似三角形對應(yīng)邊稱比例得到,繼而解題;(2)①由“射影定理”分別解得,,整理出,再結(jié)合即可證明;②由勾股定理解得,再根據(jù)得到,代入數(shù)值解題即可.(1)證明:(2)①四邊形ABCD是正方形②在中,在,.【點睛】本題考查相似三角形的綜合題,涉及勾股定理、正方形等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.2、見詳解【解析】【分析】先作m的垂直平分線,取m的一半為AB,然后以點A為圓心,以m長為半徑畫弧,交m的垂直平分線于C,連結(jié)AC,利用作一個角等于已知角,過A作BC的平行線AD,過C作AB的平行線CD,兩線交于D即可.【詳解】解:先作m的垂直平分線,取m的一半為AB,以點A為圓心,以m長為半徑畫弧,交m的垂直平分線于C,連結(jié)AC,過A作BC的平行線,與過C作AB的平行線交于D,則四邊形ABCD為所求作矩形;∵AD∥BC,CD∥AB,∴四邊形ABCD為平行四邊形,∵BC⊥AB,∴∠ABC=90°,∴四邊形ABCD為矩形,∵AB=,AC=m,∴矩形的寬與對角線滿足條件,∴四邊形ABCD為所求作矩形.【點睛】本題考查矩形作圖,線段垂直平分線,作線段等于已知線段,平行線作法,掌握矩形作圖,線段垂直平分線,作線段等于已知線段,平行線作法是解題關(guān)鍵.3、(1)3.5小時,76;(2)線段AD對應(yīng)的函數(shù)表達式為.(3)甲出發(fā)或或或小時,甲乙兩車相距10km.【解析】【分析】(1)根據(jù)乙車3小時到貨站,在貨站裝貨耗時半小時,得出小時,甲提前30分鐘,可求甲車行駛的時間為:0.5+4.5=5小時,然后甲車速度=千米/時即可;(2)利用待定系數(shù)法AD解析式為:,把AD兩點坐標(biāo)代入解析式得b=38380=4.5k+b解方程即可;(3)分兩種情況,甲出發(fā),乙未出發(fā)76t=10,乙出發(fā)后,設(shè)乙車的速度為xkm/h,利用行程列方程3x+(x-40)×1=380解方程求出x=105km/h,再用待定系數(shù)法,列方程,CD段乙車速度為105-40=65km/h,求出CD的解析式為,列方程,結(jié)合甲先行30分根據(jù)有理數(shù)加法求出甲所用時間即可.(1)解:∵3小時到貨站,在貨站裝貨耗時半小時,∴小時,甲車行駛的時間為:0.5+4.5=5小時,甲車速度=千米/時,故答案為:3.5小時,76;(2)點A表示的路程為:76×0.5=38,設(shè)AD解析式為:,把AD兩點坐標(biāo)代入解析式得:b=38380=4.5k+b解得:b=38k=76線段AD對應(yīng)的函數(shù)表達式為.(3)甲出發(fā)乙未出發(fā),∴76t=10,∴t=,乙出發(fā)后;設(shè)乙車的速度為vkm/h,3v+(v-40)×1=380解得v=105km/h,∴點B(3,315)設(shè)OB解析式為y=αx,代入坐標(biāo)得:,∴OB解析式為∴,化簡為:或,解得或,∵CD段乙車速度為105-40=65km/h,設(shè)CD的解析式為代入點D坐標(biāo)得,,解得:,∴CD的解析式為,∴,解得:,∵甲提前出發(fā)30分鐘,,,,甲出發(fā)或或或小時,甲乙兩車相距10km.【點睛】本題考查待定系數(shù)法求一次函數(shù)解析式,利用函數(shù)圖像獲取信息,絕對值方程,一元一次方程,二元一次方程組解法,分類討論思想的應(yīng)用使問題完整解決是解題關(guān)鍵.4、(1)A(﹣4,0),B(﹣4,12);(2);(3)【解析】【分析】(1)利用二次根式的性質(zhì)求出a,b的值即可.(2)如圖1中,過點E作EH⊥AB于H,EJ⊥OA于J.證明△BHE≌△FJE(ASA),推出BH=FJ=10,可得結(jié)論.(3)分三種情形討論求解①如圖2中,當(dāng)0≤t≤4時,重疊部分是四邊形MNA′O′.②如圖3中,當(dāng)4<t≤8時,重疊部分是四邊形MNKP.③如圖4中,當(dāng)8<t<12時,重疊部分是四邊形BMPC.④當(dāng)t≥12時,沒有重疊部分;(1)解:∵b12,∴,∴a=4,b=12,∴A(﹣4,0),B(﹣4,12).(2)解:如圖1中,過點E作EH⊥AB于H,EJ⊥OA于J.∵四邊形ABCO是矩形,∴∠OAB=90°.∵A(﹣4,0),B(﹣4,12),∴OA=4,AB=OC=12.∵AD平分∠OAB,∴∠DAO=45°.∵∠AOD=90°,∴△AOD是等腰直角三角形,∴OA=OD=4,∴D(0,4).∵AE=ED,∴E(﹣2,2),∴EH=EJ=2,∴BH=12-2=10.∵∠BEF=∠HEJ=90°,∴∠BEH=∠FEJ.∵∠BHE=∠FJE=90°,∴△BHE≌△FJE(ASA),∴BH=FJ=10,∴EF2.(3)解:∵OA=OD=4,∴AD=,∴當(dāng)A'與D重合時,t=4;當(dāng)MO'與BC重合時,A'運動的路徑長為8,此時t=8;當(dāng)NA'與BC重合時,A'

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論