中考數(shù)學(xué)總復(fù)習(xí)《 圓》??键c(diǎn)試卷含完整答案詳解(必刷)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》常考點(diǎn)試卷含完整答案詳解(必刷)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??键c(diǎn)試卷含完整答案詳解(必刷)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》??键c(diǎn)試卷含完整答案詳解(必刷)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》常考點(diǎn)試卷含完整答案詳解(必刷)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》??键c(diǎn)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知⊙O的半徑為4,M是⊙O內(nèi)一點(diǎn),且OM=2,則過點(diǎn)M的所有弦中,弦長是整數(shù)的共有()A.1條 B.2條 C.3條 D.4條2、已知點(diǎn)在上.則下列命題為真命題的是(

)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦3、如圖,公園內(nèi)有一個(gè)半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點(diǎn),為圓心,,小強(qiáng)從走到,走便民路比走觀賞路少走(

)米.A. B.C. D.4、一個(gè)等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(

)A. B. C. D.5、如圖,矩形中,,,,分別是,邊上的動(dòng)點(diǎn),,以為直徑的與交于點(diǎn),.則的最大值為(

).A.48 B.45 C.42 D.40第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.2、如圖,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,分別以點(diǎn)A,C為圓心,AO長為半徑畫弧,分別交AB,CD于點(diǎn)E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為___________.(結(jié)果保留π).3、如圖,中,長為,,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至,則邊掃過區(qū)域(圖中陰影部分)的面積為________.4、如圖,已知正六邊形ABCDEF的邊長為2,對(duì)角線CF和BE相交于點(diǎn)N,對(duì)角線DF與BE相交于點(diǎn)M,則MN=_____.5、圓錐的底面半徑為3,側(cè)面積為,則這個(gè)圓錐的母線長為________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,正五邊形內(nèi)接于,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),求的余角的度數(shù).2、下列每個(gè)正方形的邊長為2,求下圖中陰影部分的面積.3、如圖,在中,.(1)請(qǐng)作出經(jīng)過A、B兩點(diǎn)的圓,且該圓的圓心O落在線段AC上(尺規(guī)作圖,保留作圖痕跡,不寫做法);(2)在(1)的條件下,已知,將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與⊙O交于點(diǎn)E.試證明:B、C、E三點(diǎn)共線.4、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.5、如圖所示,四邊形ABCD的頂點(diǎn)在同一個(gè)圓上,另一個(gè)圓的圓心在AB邊上,且該圓與四邊形ABCD的其余三條邊相切.求證:.-參考答案-一、單選題1、C【解析】【分析】過點(diǎn)M作AB⊥OM交⊙O于點(diǎn)A、B,根據(jù)勾股定理求出AM,根據(jù)垂徑定理求出AB,進(jìn)而得到答案.【詳解】解:過點(diǎn)M作AB⊥OM交⊙O于點(diǎn)A、B,連接OA,則AM=BM=AB,在Rt△AOM中,AM===,∴AB=2AM=,則≤過點(diǎn)M的所有弦≤8,則弦長是整數(shù)的共有長度為7的兩條,長度為8的一條,共三條,故選:C.【考點(diǎn)】本題考查了垂徑定理,勾股定理,掌握垂直于選的直徑平分這條弦,并平分弦所對(duì)的兩條弧是解題關(guān)鍵.2、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對(duì)各項(xiàng)判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時(shí),半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí),解答的關(guān)鍵是會(huì)利用所學(xué)的知識(shí)進(jìn)行推理證明命題的真假.3、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠A,從而得到OC和AC,可得AB,然后利用弧長公式計(jì)算出的長,最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點(diǎn)】本題考查了垂徑定理:垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計(jì)算弦長、半徑、弦心距等問題.4、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點(diǎn)】本題考查三角形的內(nèi)切圓與外接圓的知識(shí),解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.5、A【解析】【分析】過A點(diǎn)作AH⊥BD于H,連接OM,如圖,先利用勾股定理計(jì)算出BD=75,則利用面積法可計(jì)算出AH=36,再證明點(diǎn)O在AH上時(shí),OH最短,此時(shí)HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過A點(diǎn)作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點(diǎn)O在AH上時(shí),OH最短,∵HM=,∴此時(shí)HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點(diǎn)】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧.也考查了矩形的性質(zhì)和勾股定理.二、填空題1、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計(jì)算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點(diǎn)】本題考查了切線長定理,掌握從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等是解題的關(guān)鍵.2、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點(diǎn)】本題考查了矩形的性質(zhì),扇形的面積等知識(shí),正確的識(shí)別圖形是解題的關(guān)鍵.3、【解析】根據(jù)已知的條件和旋轉(zhuǎn)的性質(zhì)得出兩個(gè)扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進(jìn)行計(jì)算即可得出答案.【詳解】解:∵∠BAC=60°,∠BCA=90°,△B'AC'是△BAC繞A旋轉(zhuǎn)120°得到,∴∠B'AB=120°,∠B'AC=60°,∠B'AC'=60°,△B'AC'≌△BAC,∴∠C'B'A=30°,∠C'AC=120°∵AB=1cm,∴AC'=0.5cm,∴S扇形B'AB=,S扇形C'AC=,∴S陰影部分===,故答案為【考點(diǎn)】本題考查圓的綜合應(yīng)用,熟練掌握旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)及扇形面積的求法是解題關(guān)鍵.4、1【解析】【分析】根據(jù)正六邊形的性質(zhì)和直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵正六邊形ABCDEF的邊長為2,且對(duì)角線CF和BE相交于點(diǎn)N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對(duì)角線DF與BE相交于點(diǎn)M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點(diǎn)】本題考查了正多邊形和圓,正六邊形的性質(zhì),直角三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.5、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長即為展開后的弧長,側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點(diǎn)】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長是扇形弧長,圓錐母線是扇形半徑.三、解答題1、54°【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接.∵五邊形是正五邊形,∴,∴,∴90°-36°=54°,∴的余角的度數(shù)為54°.【考點(diǎn)】本題考查了正多邊形和圓、圓周角定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.2、2.28【解析】【分析】由圖形可知陰影面積=半圓面積-兩個(gè)小三角形面積和,根據(jù)公式計(jì)算即可.【詳解】πr2÷2-2×2÷2×2=3.14×2×2÷2-4=2.28.【考點(diǎn)】本題考查了圓的面積公式,解題的關(guān)鍵是熟練掌握間接法求陰影部分圖形的面積.3、(1)見解析(2)見解析【解析】【分析】(1)只需要作AB的垂直平分線,其與AC的交點(diǎn)即為圓心O,由此作圖即可;(2)先由圓周角定理求出,再由旋轉(zhuǎn)的性質(zhì)求出,從而得到,證明△OBC≌△OEC得到∠OCE=∠OCB=90°,則∠OCB+∠OCE=180°,即可證明B、C、E三點(diǎn)共線.(1)解:如圖所示,圓O即為所求;(2)解:如圖所示,連接CE,OE,∵,∴,由旋轉(zhuǎn)的性質(zhì)可知,∴,∴,在△OBC和△OEC中,,∴△OBC≌△OEC(SAS),∴∠OCE=∠OCB=90°,∴∠OCB+∠OCE=180°,∴B、C、E三點(diǎn)共線.【考點(diǎn)】本題主要考查了線段垂直平分線的尺規(guī)作圖,畫圓,圓周角定理,旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定等等,熟知性格知識(shí)是解題的關(guān)鍵.4、(1)=;(2)答案見解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線長定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案為:=.(2)已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F(xiàn),E,H,求證:AD+BC=AB+CD,證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.(3)由(2)可知:圓外切四邊形的對(duì)邊和相等.故答案為:圓外切四邊形的對(duì)邊和相等;(4)∵相鄰的三條邊的比為2:5:6,∴設(shè)此三邊為2x,5x,6x,根據(jù)圓外切四邊形的性質(zhì)得,第四邊為2x+6x?5x=3x,∵圓外切四邊形的周長為32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四邊形的四邊的長為2x=4,5x=10,6x=12,3x=6.即此四邊形各邊的長為:4,10,12,6.【考點(diǎn)】此題是圓的綜合題,主要考查了新定義圓的外切四邊形的性質(zhì),四邊形的周長,切線長定理,理解和掌握?qǐng)A外切四邊形的定義是解本題的關(guān)鍵.5、見解析【解析】【分析】證法一,在射線EA上截取,連接OD,OE,OF,OG,因?yàn)椋?,所以,,由圓的內(nèi)接四邊形性質(zhì)得,由AD,DC是半圓O的切線得,,,即,所以,同理,即可得出結(jié)論.證法二,在BO上截取,連接FM,OF.過點(diǎn)O作,交FM的延長線于點(diǎn)N,連接OE,OD,易證,,,所以.由圓的內(nèi)接四邊形性質(zhì)得,,所以.因?yàn)椋?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論